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Abstract 

This review addressed the signaling of cellular activation 

by leucine, discussed the risks of excessive signaling by 

proteins in the Western diet, and explored the potential 

of leucine stimulation in tissue regeneration. As result, 

amino acids are, in addition to building blocks of 

macromolecules, cellular activation signals. Essential 

amino acids are not produced by animals and leucine 

appears to be the main signaling amino acid. Mammals 

adjusted the cell activation and growth rate of their 

young by the leucine concentration of the milk 

produced. Several studies demonstrate the benefits of 

leucine supplementation in preventing sarcopenia, 

improving muscle and liver performance, as well as a 

possible neuroprotective role in head trauma and 

dementia. However, its excess, so common in the 

Western diet, is related to obesity, type II diabetes, 

neurodegenerative diseases, and cancer. The mTORC1 

kinase integrates cellular activation stimuli from macro 

protein synthesis to epigenetic regulation. Controlling 

mTORC1 activity by consuming leucine can prevent, 

treat, or cause disease. A greater understanding of the 

regulatory effects of leucine and mTOR in unstable 

tissues such as tumors or fragile tissues such as the CNS 

are areas of great relevance and with extensive fields 

still to be explored. 

Keywords: Leucine. Cell metabolism. Signaling. Tissue 

regeneration. 

 

Introduction 

Amino acids are essential elements used as 

“building blocks”, energy substrates in certain metabolic 

situations, cell activation signals, and buffering agents 

(glutamate in the CNS, for example) [1-6]. Insulin and 

growth factors are incapable of cell activation in the 

absence of amino acids such as leucine [7-13].  

Plants and bacteria synthesize their amino acids, 

but animals are unable to synthesize half of the twenty 

existing amino acids, thus making their ingestion 

necessary, hence called essential amino acids, the main 

ones being branched chain (leucine, isoleucine, and 

valine), known as BCAAs (Branched-Chain Amino Acids) 

[13].  

Therefore, this review addressed the signaling of 

cellular activation by leucine, discussed the risks of 

excessive signaling by proteins in the Western diet, and 

explored the potential of leucine stimulation in tissue 

regeneration. 

 

Milk, leucine and mTOR complex  

Milk and its derivatives are the main natural source 

of leucine. According to Melnik (2012) [14], the action 

of milk on the growth rate of the calf has a direct 

relationship between growth and leucine concentration 

in the species' milk. Rat milk has 7.9 mg of leucine/mL 

and their pups double in weight every 4 days; calves 

double in weight after 40 days (cow's milk has 3.3 mg 

leucine/mL) and human milk has the lowest concentration 

of all mammals: 1.0 mg/mL of leucine, which slows 

growth for greater learning acquisition. The human baby 

doubles in weight only after six months of life. 

Furthermore, Melnik describes breastfeeding not 

as a simple source of nutrition, but as an evolution of 

cell activation signaling [1,14-16]. The leucine-

activated mTOR (mammalian/mechanistic Target Of 

Rapamycin) complex integrates nutritional, hormonal, 

and environmental stimuli in the control of cellular 

metabolism [17-19]. 

In the 1970s Sabatini et al. [18] investigating the 

lack of fungi in the soil of Easter Island discovered a 
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bacterial strain that produced a potent antifungal, 

named rapamycin (named after the island Rapa Nui, in 

the local language). Rapamycin is a potent cellular 

inhibitor by blocking the mTOR protein [20-22] and is 

being used in clinical practice even today as an 

immunosuppressant, antistenotic, and in the treatment 

of cancer [23-25]. 

The discovery of the mTOR complex began with 

the discovery of its inhibitor, rapamycin in 1975, and 

with the cloning of its genes in 1993. It was discovered 

that mTOR forms two distinct complexes when 

associating with other proteins: mTORC1 when binding 

to RAPTOR (Regulatory-Associated Protein of mTOR) 

and mTORC2 when associated with RIcTOR 

(Rapamicyn-Insensitive Companion of mTOR) (Figure 

1) [26-28]. 

 

 

Figure 1. Structure mTORC1 (A) and mTORC2 (B) and their main functions in cell activation. 

 

 

The mTORC1 complex consists of the union of 

mTOR, Raptor, mLST8 (mammalian Lethal with Sec13 

protein T8), Deptor, and DAS40 protein. Activated 

initiates cellular anabolism with lipid and protein 

synthesis. Deactivated, it causes autophagy by 

activating the kinase glycogen synthetase GSK3 β 

[29,30]. The mTORC2 complex organizes the actin 

cytoskeleton, cell migration, and survival. 

Also, mTORC1 integrates cellular activation stimuli 

from fungi to mammals [31-35]. Several studies 

indicate mTORC1 as a central regulator of gene 

transcription, ribosomal translation, mRNA transcription, 

suppressor of autophagy, and activator of ribosomal and 

mitochondrial neogenesis [36-41]. The human 

mTORC1 framework is a dimer of mTOR, Raptor, and 

mLST8 [30]. The mTORC1 complex is extremely 

sensitive to amino acid exposure and leucine appears to 

be one of its main activators [42-45]. The absence of 

leucine prevents mTORC1 activation even in the 

presence of all other amino acids, growth factors, 

glucose, and insulin [46-48]. The mTORC2 complex 

appears to be insensitive to amino acids, responding 

primarily to trophic factors [48-50]. 

 

Actions of leucine on muscle, liver, and CNS 

Tissue changes from trauma, disease or aging 

disrupt cell physiology and regenerative responses are 

necessary for homeostasis. Mammals have little 

regenerative capacity in vital organs such as the heart 

and central nervous system (CNS) but the liver, skin, 

intestine, and muscles have the great regenerative 

capacity in adult mammals [51-53].  

Understanding the mechanisms of tissue 

regeneration is essential for therapeutic interventions 

and the mTORC1 system seems to be its main pathway. 

In the CNS (minimum regenerative capacity), the 

mTORC1 pathway is stimulated in the inactivation of 

PTEN (phosphatase and tensin homologous) and TSC1 

(tuberous sclerosis complex 1) kinases, allowing axonal 

regenerative expansion [54-57]. 

Leucine is well known for its action on muscle 

hypertrophy, obesity, metabolic disorders, liver disease, 

immune activation, and cancer [14]. The correlation 

between obesity and an excessive supply of amino acids 

is observed in obese individuals due to mTOR 

hyperactivation, which may justify greater viral 

replication in these people and a worse prognosis in 

cases of COVID-19 [58]. Interestingly, the coronavirus 
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has a 5′-end mRNA and uses the same cellular protein 

translation machinery, which is hyperactivated in the 

obese [59,60].  

Amino acid signaling has been extensively studied 

in recent decades for therapeutic use in multiple trauma, 

severe burns, and senile sarcopenia, where the clinical 

benefit has been demonstrated in increasing the supply 

of BCAAs [61-65]. 

 

Muscle 

Leucine increases muscle performance during 

exercise and its intake reduces fat mass and prevents 

both senile and inadequate diet obesity, as well as type 

2 diabetes [66-70]. Leucine is the most important 

amino acid for protein synthesis [71] and can be 

administered as a nutraceutical agent in the prevention 

of sarcopenia. 

Leucine has been known to induce muscle 

anabolism since the 1970s. In skeletal muscle, 20% of 

leucine is metabolized for energy production (reduction 

of glutamate and keto acids). The remaining leucine 

(80%) activates protein synthesis (via mTORC1) and 

satellite cell expansion [72-75]. Maltais et al. (2016) 

[75] randomized 26 overweight sarcopenic men into 

resistance training for 4 months, offering post-exercise 

dairy or rice milk as a control group. Resistance training 

increased lean body mass (DEXA) in both groups, but 

the dairy group decreased their body fat rate more and 

gained more muscle mass. 

Another similar study randomized 26 sarcopenic 

obese women to receive hydrolyzed whey protein (whey 

protein) or placebo for 3 months under resistance 

training, resulting in a greater increase in lean mass in 

the group receiving the milk protein [76]. HMB 

(hydroxy-methyl butyrate) is a leucine metabolite used 

in an attempt to prevent muscle breakdown or lean 

mass gain, but it has controversial results in human and 

animal studies [77-79] performed a meta-analysis of 

11 randomized trials of HMB in training. of resistance 

and concluded that there was no significant effect on 

lean mass gain, fat mass loss, or strength increase with 

HMB, even advising its use as a nutraceutical 

supplementation. 

Gran and Cameron-Smith (2011) [80] studying 

human muscle cultures demonstrated the activation of 

mTORC1 by leucine at physiological doses. Chronic 

stimulation resulted in increased eIF4G activity 

(ribosomal transcription) at two peaks: 3h and 24h after 

leucine/insulin introduction. Continuous stimulation by 

leucine and hormones can generate a persistent cellular 

anabolic state [81]. 

Deldique et al (2008) [82] studying muscle 

cultures observed a 50% increase in mTORC1 activation 

soon after the addition of 5mM leucine, falling at 30 

minutes. Atherton et al (2010) [83] reported lower 

doses (2 Mm) also activated mTORC1. They 

demonstrated that 5 mM leucine increases 70-S6K 

activation by 10-fold and 2 mM increases p70-SK6 

activity by 5.9-fold in muscle cultures. 

In vivo tissue perfusion models are also used in 

studies of anabolic stimulation, protein synthesis, and/or 

cellular edema studies. Some studies have found that 

increasing the concentration of amino acids by up to ten 

times its plasma value does not result in tissue edema 

[84,85]. 

Bolster et al (2004) [86] cannulated and perfused 

the hind legs of rats with 1x or 10x concentrations of 

serum leucine and monitored mTOR, p70-SK6, eIF4E, 

and 4E-BP1 activation. They observed a 66% increase 

in protein synthesis in the gastrocnemius muscle and a 

70% increase in the soleus muscle of the paws perfused 

with a 10x leucine solution. The effects of tissue infusion 

supplementation with 10x leucine did not cause muscle 

edema in the rats.  

Several studies of muscle culture use leucine in 

concentration five or ten times the physiological one, 

being able to increase protein synthesis. Omitting 

leucine from the solution, even increasing the 

concentration of the other amino acids tenfold, does not 

increase protein synthesis in muscle [87-89]. Peyrollier 

et al (2000) [90] adding 2 mM leucine (normal 

concentration) to amino acid-free muscle cultures 

obtained rapid anabolic activation, doubling the protein 

synthesis marker p70-S6K and increasing five-fold 

activation of the PI3K pathway. The addition of leucine 

also increased the cellular uptake of amino acids by 

50%. 

MAP4K3 (Mitogen-Activating Protein Kinase-

Kinase-Kinase-Kinase-3) activity is also regulated by 

amino acids, but not by insulin. MAP4K3 kinase activates 

satellite cell myogenesis in rat muscle, however 

complete mTORC1 activation occurs only in the 

presence of leucine [91]. 

Supplementation with BCAAs improves oxidative 

respiration and prevents mitochondrial dysfunction. 

Studies show mitochondrial biogenesis in the cardiac 

and skeletal muscles of patients with Barth myopathy 

[92] and skeletal muscle of elderly rodents [93]. 

Supplementation with BCAAs increased mitochondrial 

survival in cardiomyocytes from animals intoxicated by 

doxorubicin [94]. 

Leucine signaling increases the number and size of 

mitochondria in the muscle fiber. It is an energy 

substrate, potentiates the oxidation of fatty acids, and 

increases glucose absorption [95-97]. Leucine 
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supplementation prevents mitochondrial dysfunction in 

nervous tissue, muscle, and liver, and is indicated in 

aging, neurodegenerative and cardiovascular diseases, 

obesity, and diabetes [98-104].  

Amino acid supplementation increases cellular 

respiration by inducing mitochondrial biogenesis [105-

108]. Mitochondria undergo cycles of fusion and fission 

that either unite with each other (respirosome) or attach 

to lysosomes and the endoplasmic reticulum [109-

111]. Mitochondria show ancestral symbiosis with the 

host cell, as they have their own (circular) DNA, but 

depend on proteins transcribed from the host cell's DNA 

[112,113]. 

There is evidence that leucine enhances 

mitochondrial biogenesis via PGC-1α and SIRT1 factors 

[114-118]. In animals, supplementation with BCAAs 

resulted in mitochondrial biogenesis with increased 

SIRT1 factor in skeletal muscle [93,107]. 

 

Liver 

The literature is rich in evidence of the benefits of 

BCAA supplementation in hepatic failure 

encephalopathies [119]. Pavlov (1893) made the first 

description of hepatic encephalopathy with ataxia and 

convulsions after portocaval anastomosis in meatfed 

dogs and the reversal of encephalopathy by switching 

to a milk-only diet in these same dogs [120]. 

Muting and Wortmann in 1956 described a 

decrease in the concentration of BCAAS in cirrhotic 

patients and an increase in aromatic amino acids [120]. 

This condition became known as Fischer's ratio: the 

lower the concentration of BCAAs, the greater the brain 

intoxication [121]. Supplementation with 

leucine/BCAAs is indicated in liver disease in patients 

with cirrhosis [122-124]. 

Supplementation with BCAAs is a nutracenic factor 

in chronic liver disease [123]. Decreased serum BCAA 

levels are credited with muscle uptake and glutamine 

synthesis by the cirrhotic patient's muscle. In vitro 

experiments have shown that high levels of ammonia 

cause leucine oxidation in muscle, consuming nitrate. 

This sequestration of ammonia in situations of azotemia 

produces glutamine in muscle tissue [125]. 

Supplementation with BCAAs stimulates 

mitochondrial biogenesis in the liver, preventing alcohol 

steatosis in animal models [126]. Increased post-

hemihepatectomy regeneration has also been 

demonstrated with leucine supplementation [127]. 

Jefferson & Korner (1967) [128] perfusing the liver of 

rats with amino acids at a physiological dose of growth 

hormone (GH) did not obtain an increase in protein 

production, but with three times the dose of amino acids 

(the same dose of GH), they obtained increased protein 

synthesis by the liver. 

Krause et al (2002) [129] studying the effects of 

leucine, glutamine, and insulin on rat liver cells found 

that isolated insulin does not increase anabolism in the 

liver, but isolated leucine can activate p70-S6K and ACC 

(synthesis markers). protein and lipid, respectively), 

concluding that the action of insulin on the hepatocyte 

depends on the joint presence of leucine. Dennis et al 

(2011) [130] perfused the liver of rats with amino acids 

with and without insulin and found that at normal or 

doubled insulin concentrations they obtained maximal 

PI3K/Akt stimulation, but no increase in protein 

synthesis. Perfusion without insulin and at four times the 

concentration of amino acids produced moderate 

protein synthesis but a combination of insulin and four 

times more amino acids caused maximum protein 

synthesis, suggesting that stimulation by amino acids in 

conjunction with insulin is necessary for mTORC1 

activation. 

 

CNS 

 The central nervous system (CNS) depends on 

oxygen and glucose, but adaptive responses allow the 

use of ketone bodies in metabolic crises, where amino 

acids are an energy source that does not require 

mitochondrial respiration [131-134]. Under CNS stress 

conditions, BCAAs (leucine, isoleucine, and valine) are 

metabolized to glutamate and keto-acids. Glutamate can 

yield glutamine or alanine and, in a second reduction, 

acetyl-CoA to the Krebs cycle [135,136]. 

BCAAs are reduced to glutamate and ketone bodies 

in the CNS by glial mitochondrial aminotransferases 

(astrocytes) and by cytoplasmic aminotransferases in 

neurons. The presence of leucine stimulates the 

reduction of glutamate in glutamine and acetyl-CoA, an 

energy source for the Krebs cycle [137,138]. 

 

The action of BCAAs in Neuronal Metabolic Crisis 

 After traumatic brain injury (TBI) there is a halt in 

mitochondrial glucose metabolism in the CNS, a 

situation known as a “metabolic crisis”. Some studies 

suggest that supplementation with BCAAs promotes 

neuroprotection, minimizing neural damage and 

improving clinical recovery [139-141]. Jeter et al 

(2013) [142] studied the metabolic alterations of 

human TBI, measuring the serum level of BCAAs in the 

first 24h in moderate TBI (EG: Glasgow scale > 12), 

severe TBI (EG <8), orthopedic traumatic injuries and 

in healthy individuals. They observed little reduction in 

BCAAs after moderate TBI and in orthopedic injuries, 

but very low values in severe TBI. Low serum BCAA 

levels in TBI are also a prognostic factor for intracranial 
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hypertension (ICP≥25 mm Hg).  

Mitochondria are the cellular energy machinery par 

excellence and use glucose and oxygen as their primary 

substrate. But in the absence of glucose or oxygen - or 

the presence of any other mitochondrial dysfunction - 

ketone bodies and acetyl-CoA are the energy source of 

the CNS. Differentiating between ischemia and 

metabolic crisis is fundamental in the management after 

TBI. Studies suggest that supplementation with 

intravenous BCAAs minimizes neurological damage to 

the CNS after the reversal of ischemia [143,144].  

Ketone bodies can reach 70% of the energy matrix 

in the CNS of mammals during fasting, trauma, or 

prolonged exercise. Blood-brain barrier (BBB) 

permeability for ketone bodies also increases during 

lactation and fasting. Recall that mammalian infant 

neuronal development is dictated by milk, which is rich 

in BCAAs, glucose, and fats [145-150]. 

 

Leucine, glutamate, and glutamine metabolism in 

the CNS 

 Astrocytes are responsible for brain energy 

stability through the production of ketone bodies from 

amino acids and fatty acids in metabolic crises by 

mitochondrial aminotransferases (BCTAm) [151,152]. 

Leucine (typical BCAA) is the amino acid that crosses the 

BBB the fastest [151-154], being metabolized in 

astrocytes as soon as they enter the BBB. It is estimated 

that 30% to 50% of CNS glutamate and glutamine 

derive from leucine absorbed in the BBB [155-158].  

Nissin et al (1987) [159] were the first to suggest 

buffering in the CNS by glutamate and ketoacids in 

leucine transamination. These keto acids (KICs) are 

taken up by neurons and re-aminated into leucine, with 

the consumption of glutamate in the synaptic cleft 

(Figure 1). Excess glutamate in the synaptic cleft is 

responsible for secondary injury to the TBI/SCI, tissue 

ischemia, and sequential neuronal death after CNS 

trauma [160-163]. Glutamate needs to be quickly 

removed from the synaptic cleft, being taken up by 

astrocytes and reduced to keto acids (mitochondrial 

aminotransferases: BCTAm) - glutamate-glutamine 

cycle - or reduced to keto acids by neurons (cytosolic 

aminotransferases: BCTAc) - leucine-glutamate cycle 

(Figure 2a). Glutamate can be transformed into 

glutamine (glutamine synthetase - GS) in astrocytes and 

exchanged for leucine in the BBB (Figure 2b) or taken 

up by the neuron, returning to glutamate via 

glutaminase (GlnAse) [164-166]. 

 

Figure 2. (A) Glutamate is removed from the synaptic cleft by the neuron itself and reduced to keto acid + leucine 
by cytosolic aminotransferases (leucine-glutamate cycle) or taken up by astrocytes and reduced to glutamine + keto 

acid by mitochondrial aminotransferases (leucine-glutamate cycle). (B) Glutamine is exchanged in the BBB for leucine 

in counterflow pumps or taken up by the neuron (returning to glutamate via glutaminase). The astrocyte can also 
take up glutamate and convert it to glutamine by the enzyme glutamine synthetase. 
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Figure 2. (C) Equilibrium of reanimation of keto acids generating glutamate (in the neuron) or leucine (in the 

astrocyte). 

Source: Own authorship. 

 

Leucine is the amino acid that most easily crosses 

the BBB, via transporters' counter-exchange for 

glutamine. This leucine is taken up by the astrocyte and 

mBCAT metabolizes leucine into glutamate and keto 

isocaproic acid (KIC). This is reanimated in the neuron 

into leucine and the ketoacid α-ketoglutarate (αKG), 

with the consumption of glutamate (Figure 2c). 

The CNS is the only tissue that has both 

aminotransferases and BCAAs are fundamental to 

biochemical regulation in the CNS, because, in addition 

to being a raw material in the synthesis of glutamate, 

they buffer its excess in the CNS, avoiding toxic levels. 

/leucine and ketoacid/glutamate and observed three 

times more leucine formation than glutamate 

[165,166]. The participation of astrocytes in the 

synapse resulted in the concept of the tripartite synapse 

[167] and the presence of a dense extracellular matrix, 

“sealing off” some synapses and preventing the 

extravasation of glutamate from the cleft resulted in the 

concept of the quadripartite synapse [168,169]. 

Schafer et al (2013) [170] also describe the 

participation of microglia in the regulation of some 

synapses (Figure 3). 

 

Figure 3. Neurons and astrocytes modulate the presence of glutamate in the synaptic cleft in the tripartite synapse 
model. A dense extracellular matrix “seals” some synapses preventing the diffusion of neurotransmitters in the 

quadripartite model. 
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Metabolic alterations of BCAAs and their effects 

on the CNS 

Aminoacidopathies are errors in amino acid 

metabolism. Maple syrup urine disease (MSUD), or 

human leucosis, is a congenital deficiency of the 

ketoacid dehydrogenase that metabolizes BCAAs 

resulting in their progressive accumulation. It is a rare 

and serious genetic disease with encephalopathy crises, 

lethargy, lowering of consciousness, convulsions, and 

death due to an excessive increase in serum leucine 

(normal: 100 +-60 µml/L; MSUD up to 60,000 µmol/L). 

Complete elimination of BCAAs from the diet or urgent 

dialysis during decompensations reverses the 

neurological picture [171-178]. 

Studying the intelligence coefficient (IQ) of 

children with MSUD under 6 years, Hoffman et al (2006) 

observed IQ 1.2 times higher in children with a serum 

leucine level below 200 μmol/L (189 ± 82 μmol/L) 

compared to children with higher plasma leucine levels 

(572 ± 217 μmol/L). Leukemias of up to 1000 µmol/L 

may even be asymptomatic, but negatively affect 

intelligence scores [174]. 

Several studies indicate alterations in BCAA 

metabolism in neurodegenerative diseases such as 

Alzheimer's, Parkinson's, and Hungtinton [179,180]. 

Low levels of valine are linked to accelerated cognitive 

decline. On the other hand, high levels of valine reduce 

the risk of Alzheimer's. BCAA-related “metabolic 

signatures” have been identified in other diseases such 

as senile obesity, type II diabetes, and atherosclerosis 

[181,182]. 

Recent studies in epidemiology have shown that 

protein intake is vital for brain function in the elderly 

population. Shang et al (2021) [182] in a 9-year cohort 

study linking protein consumption and dementia found 

that higher protein intake was associated with less 

cognitive decline in the elderly. Sato et al (2021) [183] 

observed lower neuroinflammation in protein-deficient 

mice after supplementation with essential amino acids.  

Besides, mTOR activation in brain tissue optimizes 

memory and learning [184,185]. During aging, there 

is a decrease in neuronal mTOR activity [186-188]. It 

has been shown that in retinal and cerebral cortex 

neurons, mTOR signaling decreases with age and alters 

the capacity for axonal regeneration and dendritic 

remodeling, underscoring the importance of the 

consumption of essential amino acids [189,190]. In 

this context, Suzuki et al (2020) [191] conducted a 

randomized double-blind study of cognitive assessment 

in adults aged 55 years and over with supplemental 

essential amino acid intake. Daily intake of 3 g or 6 g of 

amino acids for 12 weeks resulted in better attention, 

cognition, and psychosocial functioning compared to the 

pre-supplementation state and the placebo group. 

Elderly people with dementia have a lower protein 

intake than healthy elderly people. Tynkkynen et al 

(2018) [192], in a cohort study, demonstrated low 

serum levels of BCAAs associated with the development 

of Alzheimer's disease. Fernando et al (2018) [193], in 

another cohort study, observed that the more protein 

was consumed, the lower the presence of β-amyloid in 

the brain of the population studied. These results 

highlight the protective impact of protein intake on the 

brains of older adults. Leucine is a BCAA known to 

activate the mTOR pathway. Glycogen synthetase 3β 

kinase (GSK-3β) is a counter-regulatory and potent 

inhibitor of mTORC1. GSK-3β is hyperactivated in 

neurodegenerative diseases [194-198] and the 

accumulation of β-amyloid is responsible for 

neurotoxicity in tauopathies [198-201]. 

 

Cellular uptake of leucine 

Despite the recognition of the importance of amino 

acids in cell activation since 1955 (Hosios et al, 2016) 

[202], only in the last decades has there been a better 

understanding of the mechanisms of cell activation by 

amino acids, their transporters, metabolizing enzymes 

and correlation with diagnosis and treatment of tissue 

disease and dysfunction [203-206]. The uptake of 

amino acids depends on specific channels, but also non-

selective endocytosis processes. There are at least 17 

amino acid transport channels, the main ones being the 

L (leucine-preferred), A (alanine-preferred), and ASCT2 

(alanine-serine-cysteine 2) transporter [207-209]. 

Free amino acids are rapidly taken up by cells via 

membrane channels and activate mTORC1 within 

minutes (Nicklin et al, 2009) [210] whereas albumin or 

larger proteins activate mTOR only after 2 hours, 

peaking at 4 hours. Therefore proteins taken up by 

endocytosis activate mTORC1 much more slowly than 

free amino acids [211]. 

 

Selective uptake of amino acids  

Amino acids such as leucine and glutamine are as 

essential to cellular metabolism as oxygen and glucose 

[212-215]. The L channel is the main transporter of 

essential amino acids and is highly expressed in the 

brain, gonads, pancreatic islets, and placenta, but also 

tumors such as lung, prostate, and breast. Blockade of 

L channels, in particular LAT1, results in apoptosis and 

is a therapeutic target in the treatment of acute 

lymphoblastic leukemia, osteosarcoma, and 

cholangiocarcinoma [216-220]. 
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The LAT1 channel is the main transporter of 

essential amino acids to the CNS, T lymphocytes, and 

skeletal muscle, with LAT1 increasing in skeletal muscle 

1 and 3 hours after ingestion of essential amino acids. 

The LAT1 transporter is of great importance in amino 

acid uptake and cell signaling [221-223]. Leucine 

transport by L channels (SLC1A5, SLC7A5, and SLC3A2) 

exchanges intracellular glutamine for extracellular 

leucine. Glutamate, metabolized to glutamine, also 

enhances leucine absorption in Lexchange channels 

[224,225] (Figure 4). 

 

Figure 4. System A (SNAT2) absorbs glutamine and sodium. The sodium-potassium pump expels sodium and the 

leucine L transporter system (LAT1) absorbs leucine expelling glutamine. 

Source: Own authorship. 

 

The LAT1 transporter is the main controller of free 

amino acid entry and subsequent mTORC1 activation in 

the brain, muscle, and immune system. In the brain, the 

LAT1 channel is essential for the development of the 

nervous system and its exclusion in KO (Knock Out) 

mice is lethal. In humans, LAT1 mutations are related to 

autism spectrum disorders and disorders such as 

microcephaly and seizures [226]. Inhibiting the uptake 

of BCAAs may be beneficial in neurological tumors with 

high LAT1 expression such as in gliomas [227].  

LAT1-dependent amino acids influence the bone 

skeleton, a tissue that undergoes constant remodeling 

dependent on the activation of osteoclasts and 

osteoblasts [225]. Ozaki et al (2019) [226] identified 

the LAT1 transporter in osteoclasts and its reduction in 

post-ovariectomy mice. Decreased leucine uptake 

inhibits mTORC1 activation in osteoclasts resulting in 

osteoporosis. mTOR activation promoted bone loss 

recovery in LAT1 knock-out mice. There is a strong 

dependence of leucine levels on the growth of bone 

sarcomas. Biopsies show an increase in BCAA enzymes 

in these tumors and the use of a leucine analog, N-

Acetyl-Leucine Amide (NALA) blocks leucine uptake, 

dramatically decreasing the activity of bone sarcomas 

[228].  

Leucine is an amino acid transported by LAT1 

channels and its blockade is a target in cancer control, 

a channel overexpressed in malignant tumors [227-

231]. High LAT1 expression in cancer biopsies is even 

a poor prognostic factor. The activated mTORC1 system 

increases the expression of amino acid transporters 

[232-233]. Lymphocyte activation in the immune 

response depends on metabolic reprogramming, with 

increased expression of glucose and amino acid 

channels for rapid proliferative expansion [234]. 

Leucine is a potent mTORC1 stimulator and depleting 

leucine or blocking its transporter prevents T 

lymphocyte activation to the same extent as total amino 

acid deprivation. Inhibition of leucine entry into T cells 

prevents their proliferation, allowing control over 

allergies and lymphomas for example [235-244]. 

 

Non-selective uptake of amino acids  

Mammalian cells utilize glucose and free amino 

acids as an energy source, even in protein- or albumin-

rich environments such as plasma [245-247]. In 

addition to specific transporters, cells have developed 

alternative uptake of amino acids in the presence of 

growth factors or ischemic and deficient conditions. 

Although mTORC1 is activated only by free amino acids 

such as leucine, these are the smallest fraction in 

circulating plasma. Even with an increase in selective 

transporters, the macropinocytosis system is the main 

uptake mechanism during cell activation [248]. 

The first cellular change that occurs after activation 

of the membrane receptor by growth factor is surface 

cytoskeleton remodeling [246-248], which forms 

pseudopods that “embrace” large amounts of 

extracellular solute. Even in tumor cells, which are 

independent of growth factors, mTORC1 activation 

depends on the uptake of free amino acids [249-255] 

(Figure 5). 
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Figure 5. A) Entry of amino acids and glucose into the cell occurs through selective channels (left) or, more intensely 

and nonspecifically, via macropinocytosis activated by growth factors (right) - adapted from Yoshida et al, 2009. B) 
Graph showing a large amount of albumin, other proteins, etc. and the minimum fraction of free amino acids in the 

blood plasma (smallest slice) highlighted - adapted from Palm et al, 2015. 

 

Also, macropinosomes are growth factor signal 

transducers [256]. Macrophages exhibit immediate 

macropinocytosis after exposure to the growth factor 

MCSF [257-259]. The protein synthesis marker S6K 

increases 5 minutes after the addition of MCSF to the 

culture medium, as well as the anabolic activation 

markers MAPK, ERK, PI3K, and mTORC2. Cultures in 

amino acid-rich media have greater mTORC1 activity 

than amino acid-poor media with the same MCSF 

concentration [260]. 

Growth factors activate mTORC1 by 

macropinocytosis with the rapid uptake of free amino 

acids. mTORC1 activation appears to be proportional to 

leucine uptake [261]. With the same PDGF trophic 

factor concentration, but different leucine 

concentrations (0.4 mM and 4 mM), there was an 

increase in mTORC1 activity in cultures with higher 

leucine concentrations.Macropinocytosis was first 

demonstrated by Lewis in 1931, calling his description 

“pinocytosis” (“cell engulfing”) [255]. Macropinosomes 

form macro protein vesicles that bind to the Golgi 

Complex and lysosomes hydrolyze macro proteins into 

the free amino acids required for mTORC1 activation 

[262-264]. 

Electron microscopy studies have demonstrated 

macropinocytosis in the CNS and its decrease appears 
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to be related to amyloid accumulation and 

neurodegenerative diseases such as Alzheimer's 

[265,266]. Macropinocytosis also occurs at the 

regenerating ends of axons; the growth cones. In vitro 

and in vivo analyses demonstrated that these 

terminations form membrane extensions with high 

molecular weight (10 KDa) vesicles, suggesting 

macropinocytosis in the axon and synaptic connections 

[267-270]. 

By verifying the amount of leucine captured by 

transporters and by macropinocytosis, the PDGF-

dependent mTORC1 activation was measured by the 

presence of the dipeptide Ala-Leu (does not pass 

through the transporters) in culture media. There was 

an increase in S6KF only 30 minutes after the 

introduction of the AlaLeu dipeptide, indicating that 

mTORC1 activation occurs only after the hydrolysis of 

AlaLeu into free leucine. The presence of free leucine 

activates mTORC1 between 2 and 3 minutes [261]. 

In tumor cells, macropinocytosis occurs without 

the need for growth factors (RAS-mutant cells). These 

have enormous energy demand that is met by 

glutamine. Glutaminolysis generates the NADPHs and 

fatty acids needed for growth without the need for 

mitochondrial respiration. This is known as the Warburg 

Effect and allows cell growth even under ischemic 

conditions [271-276]. The Warburg effect is the 

dissociation of mitochondrial metabolism generating a 

cellular growth phenotype even in hypoxia, highlighting 

the importance of amino acids in situations of metabolic 

stress [277,278]. BCAAs are reduced to keto acids, 

glutamate, and glutamine, substrates for the Krebs 

cycle during the Warburg effect. Glutamine is the fuel 

used by most cancer cells through macropinocytosis 

(Ras-mutant cells) [279-283]. 

The presence of amino acids allows cellular 

anabolism without the need for mitochondrial 

respiration (even in the presence of oxygen and 

glucose) in tumor and nontumor cells, as in ischemic 

wound healing [284-286]. Activated T cells use 

macropinocytosis for rapid amino acid uptake and 

immediate lymphoproliferative response, both immune 

and tumor, without the need for mitochondrial 

respiration [287-288]. There is a strong dependence 

between the levels of BCAAs and the growth of osteo 

and chondrosarcomas. Tumor biopsies in patients 

reveal overexpression of BCAAmetabolizing cytosolic 

aminotransferases [288]. These are prognostic 

markers as they are increased in more aggressive 

tumors [284-287]. BCAT1 (cytosolic aminotransferase 

for BCAAs) is overactive in chronic myeloid leukemia 

(CML) and overexpressed in chronic myeloid leukemia 

[282-284]. 

Physiological and pathological signaling 

mTORC1 

mTORC1 controls cell activation in the presence of 

nutrients and trophic factors. Several studies indicate 

mTORC1 as the center of convergence of the various 

anabolic activation signals [289-298]. mTORC1 

regulates gene transcription, and ribosomal translation 

suppresses autophagy and activates the mitochondrial 

machinery and the protein and lipid synthesis machinery 

[299-304]. mTORC1 is activated by the Rag (Ras 

adenosine guanidine) and Rheb (Ras homolog enriched 

in the brain) GTPases, each controlled by a pathway. 

Rag fixes mTORC1 on the lysosome surface in the 

presence of some amino acids (Raptor binding) [305-

309] and Rheb, present in the lysosome, activates 

mTORC1 through trophic factors and glucose [310]. 

 

Initial activation: the RAG pathway 

Sancak et al (2010) [305] demonstrated that, in 

the presence of amino acids, free mTORC1 binds to the 

lysosome surface (via RAG) and is only later activated 

(via Rheb) by trophic factors. Mammals have four Rags 

(A, B, C, and D) that form A/B and C/D dimers. Raptor 

binding (from mTORC1) to RagD (present in lysosome) 

is activated by leucine and arginine [311-315]. 

Leucine mTOR activation is a consensus and the 

mechanisms are detailed in several reviews [316-320]. 

Recently Meng et al (2020) [316] reassessed the 

mTORC1 activation capacity of each amino acid and 

found that 10 amino acids (alanine, arginine, 

asparagine, glutamine, histidine, leucine, methionine, 

serine, threonine, and valine) are capable of binding to 

mTORC1 to the lysosome, but leucine, arginine, and 

methionine are the most potent, increasing S6K1 (a 

marker of ribosomal activity) in just 15 minutes, while 

glutamine, asparagine, and methionine take, for 

example, over an hour [317,318]. Activation of 

mTORC1 by glutamine is slower because it is RAG-

independent [319]. There is also an exchange of 

glutamine for leucine by antitransport channels 

[320,321]. The discovery of Rags improved the 

understanding of mTORC1 regulation by amino acids 

[319,322]. 

In this sense, Han et al identified the LRS (leucyl-

tRNA synthetase) sensor, which binds leucine to RAG-D, 

binding free cytosolic mTORC1 to the lysosome. 

LRS/RagD – mTORC1 associations are observed only in 

the presence of leucine. LRS-deficient mice are unable to 

attach mTORC1 to the lysosomal surface, even in the 

presence of leucine [323]. Other studies have also 

confirmed the role of the LRS sensor in mTORC1 

preactivation [324-329]. 

In addition to LRS, Sestrin 2 is another leucine 
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sensor, which inhibits the mTORC1 inhibitor kinase 

GATOR1 [329]. The presence of leucine disrupts the 

Sestrin 2 - Gator2 bond, releasing the GATOR 2 kinase 

that blocks GATOR1 and activates mTORC1. Wolfson et 

al tested the effect of amino acids on Sestrin 2 and found 

that only leucine (and not arginine) produces Sestrin 2-

GATOR 2 dissociation with GATOR 1 blockade and 

mTORC1 activation [330-332]. Further to leucine, 

arginine and methionine are mTORC1 activators. Arginine 

uses the CASTOR1 pathway and methionine inhibits 

SAMTOR and GATOR 1/2 kinases. Both activate mTORC1 

by inhibiting GATOR1 [333-338]. These sensors are 

present in lysosomes, mitochondria, rough endoplasmic 

reticulum, and Golgi complex, attaching mTORC1 to their 

surfaces in the presence of these amino acids [339-

341]. 

In cell cultures, the removal of leucine or arginine 

prevents S6K activation, suggesting that both, in addition 

to methionine, are the main regulatory amino acids of 

mTORC1 activity. Wolfson et al (2016) [332] examined 

Sestrin-2/GATOR2 binding and observed that a lack of 

leucine, but not arginine, blocks mTORC1 activation. 

Thus, GATOR 2 acts more as an amino acid sensor than 

a mTORC1 activator [334]. There are other indirect 

mechanisms of mTORC1 activation by amino acids, such 

as the increase of intracellular calcium, by the 

mobilization of stores of the endoplasmic reticulum by 

SHP-2, activated by amino acids [342,343]. The acetyl-

Coa metabolite enhances the RagD-Raptor interaction, 

binding mTORC1 to the lysosome [340]. Very recent 

studies have identified dysfunction of GATOR kinases 1 

and 2 in the origin of some epilepsy, diseases called 

GATORpathies [344-350]. GATOR dysfunction alters 

mTORC1 activation, being part of the group of mTORC1 

hyperactivity disorders (mTORpathies) [351-354]. 

mTORpathies occur in obesity, cancer, 

neurodegenerative diseases, and type II diabetes [355-

363], which will be discussed below.  

 

Final activation: the Rheb pathway 

With mTORC1 attached to the lysosome surface in 

the presence of amino acids, it binds to Rheb, activated 

by trophic factors and glucose [364]. Lysosomes are the 

ideal site of mTORC1 activation due to the high 

concentration of amino acids [365-366]. Other 

organelles, such as mitochondria and the Golgi complex, 

also attach mTORC1 to their surfaces in the presence of 

amino acids [360]. Recently, a fusion of the Golgi 

complex to lysosomes in the presence of amino acids has 

been described to transfer Rheb from the Golgi complex 

to lysosomes, increasing Rheb on the lysosomal surface 

to maximize mTORC1 activation in lysosomes [362-

365].  

Rheb is the final pathway of mTORC1 activation that 

occurs in the presence of trophic factors and glucose. 

Trophic factors dissociate TSC-1 from TSC-2 (Tuberous 

Sclero Complex 1 and 2) [319,320]. During fasting, 

cytosolic TSC-2 is shifted to the lysosome, inactivating 

Rheb and turning off mTORC1 activity [321-324]. 

Tuberous sclerosis is the prototypical disease of TSC1/2 

dysfunction, with consequent mTORC1 hyperactivation 

(Figure 6). It is a rare autosomal dominant with tumor 

formation in kidneys, heart, lungs, eyes, skin, and brain. 

About 80 to 90% of these people have epilepsy, 

developmental delay or mental retardation, behavioral 

disorders, and autism [325-329]. 

 

Figure 6. Growth factors and amino acids activate mTORC1 via different pathways: amino acids (right) bind mTORC1 

to the lysosome via RAG and via RHEB (left) it is the ultimate activator of mTORC1 by growth factors and glucose. 

Source: Own authorship. 
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Therapeutic Interventions on mTORC1 

Congenital mTOR hyperactivity disorders are often 

associated with difficult-tocontrol epilepsies [367-370] 

and mTOR inhibitors such as rapamycin, everolimus, 

and other rapanalogues are studied in the treatment of 

these epilepsies. As in tuberous sclerosis, autism, 

dementia, traumatic brain injury and stroke, and cancer 

[371-379]. The tuberous sclerotic complex TSC1/2 is 

inhibited in most tumors, with mTORC1 hyperactivity 

and rapid tumor growth [379,380]. Kaposi's sarcoma, 

for example, is a highly vascularized tumor and 

angiogenesis and growth are blocked with the use of 

rapamycin [381-386]. 

Mantle cell lymphomas (MCL) respond to 

rapamycin [387-390]. Rapanalogues are used in the 

treatment of leukemias to block the 

PI3K/AKT/TSC1/2/mTORC1 pathway, which is 

overactivated [387-392]. mTORC1 inhibitors are also 

used as immunosuppressants in certain kidney 

transplants [393], in the treatment of gliomas [394-

399], and other cancers [400-405]. Recent data 

suggest imbalances of mTOR activity in diseases such 

as Parkinson's, Huntington's, Alzheimer's, 

frontotemporal dementia, and amyotrophic lateral 

sclerosis [406-409]. Rapanalogues and newer mTOR 

inhibitors can slow these neurodegenerative changes 

[410-413]. 

Alzheimer's disease (AD) is the most common form 

of dementia [414], characterized by the accumulation 

of proteins (β amyloid and tau) in brain tissue resulting 

in cognitive decline. Post-mortem studies of human AD 

brains indicate mTOR hyperactivation and 

overproduction of β amyloid and tau proteins [415-

421]. Down syndrome is the most frequent 

chromosomal abnormality and it is associated with a 

congenital intellectual deficit. There is also an 

accumulation of tau and β amyloid proteins in brain 

tissue by mTOR hyperactivation [422-426]. Several 

studies of mTORC inhibition with rapamycin and 

rapanalogues suggest strong clinical potential in slowing 

the progression of cognitive impairment in Alzheimer's 

disease and Down syndrome [427-430]. 

Not only mTOR blockade has therapeutic action, 

but its activation is also a clinical target, as discussed in 

topic 3. mTORC1 activation is necessary for tissue 

regeneration such as muscle, liver, bone, intestine, etc. 

and its non-activation is a crucial factor. from the lack 

of CNS regeneration [431-438]. Neurons are 

particularly distinct, highly polarized cells with unique 

morphology and axon processes that can be thousands 

of times in length relative to the size of their cell bodies. 

The accumulation of cytoplasmic organelles along the 

axon forms small regional centers of synthesis, with 

some independence from the distant nucleus, which 

allows the synthesis of proteins necessary for reparative 

axonal budding or creation of new synapses in the CNS 

[438-441]. 

Also, mTOR activation results in axonal 

regeneration of optic nerve injury in animal models 

stimulated by growth factors [442,443]. mTORC1 

activation occurs at the axon tip, on the surface of 

lysosomes present there, producing the macromolecules 

necessary for the formation of the growth cone and 

neoaxon expansion [443,444]. 

Besides, mTORC1 activation may, however, be 

contrary to the recovery of the injured spinal cord, as 

activated astrocytes form extensive glial scars and block 

local axonal attempts at regeneration [444]. TRM 

models of hemisection and mTORC1 hyperactivation 

provoked by injection of interleukin 6 (PIP3/AKT/mTOR 

pathway activator) or by PTEN kinase blockade 

(PIP3/AKT/mTOR pathway inhibitor) provoked 

regenerative growth of the corticospinal tract in mice 

[445-447]. 

Therefore, the current understanding of the 

molecular mechanisms of cell activation indicates that 

axonal organelles are fundamental organizational 

centers for growth cone progress and mTORC1 

stimulation of axonal lysosomes may be one of the 

missing keys to CNS repair. 

 

Conclusion 

Amino acids are, in addition to building blocks of 

macromolecules, cellular activation signals. Essential 

amino acids are not produced by animals and leucine 

appears to be the main signaling amino acid. Mammals 

adjusted the cell activation and growth rate of their 

young by the leucine concentration of the milk 

produced. Several studies demonstrate the benefits of 

leucine supplementation in preventing sarcopenia, 

improving muscle and liver performance, as well as a 

possible neuroprotective role in head trauma and 

dementia. However, its excess, so common in the 

Western diet, is related to obesity, type II diabetes, 

neurodegenerative diseases, and cancer. The mTORC1 

kinase integrates cellular activation stimuli from macro 

protein synthesis to epigenetic regulation. Controlling 

mTORC1 activity by consuming leucine can prevent, 

treat, or cause disease. A greater understanding of the 

regulatory effects of leucine and mTOR in unstable 

tissues such as tumors or fragile tissues such as the CNS 

are areas of great relevance and with extensive fields 

still to be explored. 
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