Skip to main content Skip to main navigation menu Skip to site footer
Case Report
Published: 02-13-2022

Can the consumption of Seeds, Leaves and Fruit Peels avoid the risk factors for Cardiovascular Disorders?

Doutoranda pela Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Júlio de Mesquita Filho, UNESP, Botucatu, Brasil / Docente da Faculdade de Tecnologia de Alimentos – Fatec Marília/SP, Marília, Estado de São Paulo, Brasil
phytochemicals antioxidants fruit plants

Abstract

Changes in the feeding pattern of the population have recently led to a greater occurrence of cardiovascular risk factors that contribute to a high rate of morbidity and mortality worldwide. The presence of beneficial bioactive compounds in fruits and processed sub-products have proven to have a negative association with risk factors, such as blood pressure reduction, plasmatic lipoproteins control and increased resistance of LDL-c to oxidation, in addition to glycemic control and antioxidant effects. The aim of this review is to show that several studies have demonstrated many different chemical compounds in seeds, leaves and fruit peels, including their metabolic and physiologic effects on the risk factors of cardiovascular diseases. We reviewed the relevant literature by searching English-language publications in Pubmed, Google Scholar, Scielo and Lilacs, and references from relevant articles published since 2010, especially in the last five years. Eighty-seven relevant articles were included.

Metrics

Metrics Loading ...

References

  1. Cardona D, Cerezo MP, Parra H, Quintero L, Muñoz L, Cifuentes OL et al. Inequalities in mortality by cardiovascular diseases in the Colombian Coffee Growing Region, 2009-2011. Biomedic 2015 Sep; 35(3): 379-794.
  2. Kei A, Elisaf MS. Nicotinic acid: clinical considerations. Expert Opin Drug Saf. 2012 May; 11(4): 551-564.
  3. Praveen PA, Roy A, Prabhakaran D. Cardiovascular Disease Risk Factors: A Childhood Perspective. Indian J Pediatr. 2012 May; 80(s1):3-12.
  4. Ruano GM, Silvestre TV, Aguirregoicoa GE, Criado GL, Duque LY, García-Blanch G. Nutrition, metabolic syndrome and morbid obesity. Nutr Hosp. 2011 Jul-Aug; 26(4):759-64.
  5. Same RV, Feldman DI, Shah N, Martin SS, Al Rifai M, Blaha MJ, Graham G7, Ahmed HM. Relationship Between Sedentary Behavior and Cardiovascular Risk. Curr Cardiol Rep. 2016 Jan; 18(1):6.
  6. Bezerra IN, Curioni C, Sichieri R. Association between eating out of home and body weight. Nutr Rev. 2012 Feb; 70(2):65-79.
  7. Crowe F, Roddam A, Key T, Appleby P, Overvad K, Jakobsen M, et al. Fruit and vegetable intake and mortality from ischaemic heart disease: results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Heart study. Eur Heart J. 2011; 32:1235-43.
  8. Toh JY, Tan VM, Lim PC, Lim ST, Chong MF. Flavonoids from fruit and vegetables: a focus on cardiovascular risk factors. Curr Atheroscler Rep. 2013; 15:368.
  9. Leblanc V, Hudon AM, Royer MM, Corneau L, Dodin S, Bégin C, Lemieux S. Differences between men and women in dietary intakes and metabolic profile in response to a 12-week nutritional intervention promoting the Mediterranean diet. J Nutr Sci. 2015 Apr; 4(13):1-11.
  10. Sayegh M, Tsiountsioura M, Page P, Rio DD, Ray S. National Safety Associates nutritional supplementation trial of fruit and vegetable extracts and vascular function (NNTV): study protocol for a randomised controlled trial. Trials. 2016 Feb; 17: 67.
  11. Parmar HS, Dixit Y, Kar A. Fruit and vegetable peels: Paving the way towards the development of new generation therapeutics. Drug Discov Ther. 2010 Oct; 4(5):314-25.
  12. Sousa MSB, Vieira LM, Silva MJM, Lima A. Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Cienc Agrotecnol. 2011; 35(3):554-559.
  13. Arbos KA, Stevani PC, Castanha RF. Antimicrobial and antioxidant activity and total phenolic content in mango peel and kernel. Rev. Ceres. 2013. Mar/Abr; 60 (2): 161-165.
  14. Deng GF, Shen C, Xu XR, Kuang RD, Guo YJ, Zeng LS. et al. Potential of Fruit Wastes as Natural Resources of Bioactive Compounds. Inter J Molec Sciences. 2012; 13(7):8308–8323.
  15. Akhtar N, Khan BA, Majid A, Khan HM, Mahmood T, Gulfishan, Saeed T. Pharmaceutical and biopharmaceutical evaluation of extracts from different plant parts of indigenous origin for their hypoglycemic responses in rabbits. Acta Pol Pharm. 2011 Nov-Dec; 68(6):919-25.
  16. Melo OS, Bergamaschi KB, TiveronI AP, MassarioliI AP, CadorinTL, OldoniI MC, et al. Composição fenólica e atividade antioxidante de resíduos agroindustriais. Ciênc Rural. 2011 Jun; 41(6):1088-1093.
  17. Infante J, Selani MM, Toledo NMV, Silveira-Diniz MF, Alencar SM, Spoto MHF. Atividade antioxidante de resíduos agroindustriais de frutas tropicais. Braz J. Food Nutr. 2013; 24(1):87-91.
  18. Chang YP, Tan MP, Wai LL, Pakianathan S, Supramaniam Y. Making Use of Guava Seed (Psidium guajava L): The Effects of Pre-treatments on Its Chemical Composition. Plant Foods for Human Nutrition. 2014 March; 69(1):43-49.
  19. El Anany AM. Nutritional composition, antinutritional factors, bioactive compounds and antioxidant activity of guava seeds (Psidium Myrtaceae) as affected by roasting processes. J Food Science Technol. 2015; 52(4):2175-2183
  20. Farinazzi-Machado FMV, Guiguer EL, Souza MSS, Barbalho SM, Bueno PCS, et al. Effects of Psidium guajava on the metabolic profile of Wistar rats. J Medicinal Plants Res. 2012 May; 6(18):3450-3454 16 May, 2012.
  21. Daiuto ER, TremocoldiII MG, Alencar SM, Vieites RL, Minarelli PH. Composição química e atividade antioxidante da polpa e resíduos de abacate ‘Hass’. Rev Bra Frutic 2012; 36(2): 417-424.
  22. Kosińska A, Karamać M, Estrella I, Hernández T, Bartolomé B, Dykes GA.Phenolic Compound Profiles and Antioxidant Capacity of Persea americana Mill. Peels and Seeds of Two Varieties. J Agric Food Chem. 2012 May 9;60(18):4613-9. Epub 2012 Apr 24.
  23. Pahua-Ramos ME, Ortiz-Moreno A, Chamorro-Cevallos G, Hernández-Navarro MD, Garduño-Siciliano L, Necoechea-Mondragón H, Hernández-Ortega M. Hypolipidemic effect of avocado (Persea americana Mill) seed in a hypercholesterolemic mouse model. Plant Foods Hum Nutr. 2012 Mar; 67(1):10-6.
  24. Sabir A, Unver A, Kara Z. The fatty acid and tocopherol constituents of the seed oil extracted from 21 grape varieties (Vitis spp.). J Sci Food Agric. 2012 Jul; 92(9):1982-7.
  25. Ngamukote S, Mäkynen K, Thilawech T, Adisakwattana S. Cholesterol-lowering activity of the major polyphenols in grape seed. Molecules, 2011 Jun; 16(6):5054-61
  26. Dogan A, Celik I. Hepatoprotective and antioxidant activities of grapeseeds against ethanol-induced oxidative stress in rats. Br J Nutr. 2012 Jan; 107(1):45-51.
  27. Serrano J, Casanova-Martí À, Gual A, Pérez-Vendrell AM, Blay MT, Terra X, et al. A specific dose of grape seed-derived proanthocyanidins to inhibit body weight gain limits food intake and increases energy expenditure in rats. Eur J Nutr. 2016 Apr 2. [Epub ahead of print].
  28. Zhang Z, Li Y, Li Y. Grape seed proanthocyanidin extracts prevent hyperglycemia-induced monocyte adhesion to aortic endothelial cells and ameliorates vascular inflammation in high-carbohydrate/high-fat diet and streptozotocin-induced diabetic rats. Int J Food Sci Nutr. 2016 Apr 27:1-11.
  29. Mansouri E, Khorsandi L, Zare Moaiedi M. Grape Seed Proanthocyanidin Extract Improved some of Biochemical Parameters and Antioxidant Disturbances of Red Blood Cells in Diabetic Rats. Iran J Pharm Res. 2015 Winter;14(1):329-34.
  30. Shivapriya S, Ilango K, Dubey GP. Evaluation of antioxidant and neuroprotective effect of Hippophae rhamnoides (L.) on oxidative stress induced cytotoxicity in human neural cell line IMR32. Saudi Journal of Biological Sciences. 2015; 22(5):645–650.
  31. Wang J, Zhang W, Zhu D, Zhu X, Pang X, Qu W. Hypolipidaemic and hypoglycaemic effects of total flavonoids from seed residues of Hippophae rhamnoides L. in mice fed a high-fat diet. J Sci Food Agric. 2011 Jun; 91(8):1446-51.
  32. Lourith N, Kanlayavattanakul M. Antioxidant activities and phenolics of Passiflora edulis seed recovered from juice production residue. J Oleo Sci. 2013; 62(4):235-40.
  33. Santana FC, Shinagawa FB, Araujo ES, Costa AM, Mancini-Filho J. Chemical Composition and Antioxidant capacity of brazilian Passiflora seed oils. J Food Science. 2015 Dec; 80(12): 647-54, 2015.
  34. Sano S, Sugiyama K, Ito T, Katano Y, Ishihata A. Identification of the Strong Vasorelaxing Substance Scirpusin B, a Dimer of Piceatannol, from Passion Fruit (Passiflora edulis) Seeds J. Agric. Food Chem. 2011 Jun; 59(11):6209-13.
  35. Tang YL, Chan SW. A Review of the Pharmacological Effects of Piceatannol on Cardiovascular Diseases. Phytother Res. 2014; 28 (11):1581-1588.
  36. Uchida-Maruki H, Inagaki H, Ito R, Kurita I, Sai M, Ito T. Piceatannol lowers the blood glucose level in diabetic mice. Biol Pharm Bull. 2015; 38(4):629-33.
  37. Oritani Y, Okitsu T, Nishimura E, Sai M, Ito T, Takeuchi S. Enhanced glucose tolerance by intravascularly administered piceatannol in freely moving healthy rats. Biochem Biophys Res Commun. 2016 Feb 12; 70(3):753-8.
  38. Perez-Gutierrez RM, Muñiz-Ramirez A, Gomez YG, Ramírez EB. Antihyperglycemic, antihyperlipidemic and antiglycation effects of Byrsonima crassifolia fruit and seed in normal and streptozotocin-induced diabetic rats. Plant Foods Hum Nutr. 2010 Dec; 65(4):350-7.
  39. Gutierrez RMP, Flores JMM. Effect of Chronic Administration of Hexane Extract of Byrsonima Crassifolia Seed on B-Cell and Pancreatic Oxidative Parameters in Streptozotocin-Induced Diabetic Rat. African Journal of Traditional, Complementary, and Alternative Medicines. 2014;11(2):231-236.
  40. Shahraki MR, Harati M, Shahraki AR. Prevention of high fructose-induced metabolic syndrome in male wistar rats by aqueous extract of Tamarindus indica seed. Acta Med Iran. 2011; 49(5):277-83.
  41. Maiti R, Misra DS, Ghosh D. Hypoglycemic and Hypolipidemic Effect of Seed Hydromethanolic Extract of Tamarindus indica L. on Streptozotocin Induced Diabetes Mellitus in Rat. Am J Phytomed Clin Therap. 2014; 2(12):1416-1429.
  42. Sharma SB, Tanwar RS, Nasir A, Prabhu KM. Antihyperlipidemic effect of active principle isolated from seed of Eugenia jambolana on alloxan-induced diabetic rabbits. J Med Food. 2011 Apr; 14(4):353-9.
  43. Zoungas S, Curtis AJ, McNeil JJ, Tonkin AM. Treatment of Dyslipidemia and Cardiovascular Outcomes: The Journey So Far—Is This the End for Statins? Clin Pharmacol Therap. 2014; 96(2):192–205.
  44. Loizzo MR, Tundis R, Bonesi M, Menichini F, De Luca D, Colica C, Menichini F. Evaluation of Citrus aurantifolia peel and leaves extracts for their chemical composition, antioxidant and anti-cholinesterase activities. J Sci Food Agric. 2012; 92(15): 2960-67.
  45. Boshtam M, Moshtaghian J, Naderi G, Asgary S, Nayeri H. Antioxidant effects of Citrus aurantifolia (Christm) juice and peel extract on LDL oxidation. J Res Med Sci. 2011 Jul; 16(7):951-5.
  46. Kang SI, Shin HS, Kim HM, Hong YS, Yoon SA, Kang SW, et al. Citrus sunki peel extract exhibits antiobesity effects by β-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull. 2012 ;35(2):223-30.
  47. Castro-Vazquez L, Alañón ME, Rodríguez-Robledo V, Pérez-Coello MS, Hermosín-Gutierrez I, Díaz-Maroto MC, et al. Bioactive Flavonoids, Antioxidant Behaviour, and Cytoprotective Effects of Dried Grapefruit Peels (Citrus paradisi Macf.) Oxid Med Cell Longev. 2016; 2016: 8915729.
  48. Ajila CM, Rao LJ, Rao UJ. Characterization of bioactive compounds from raw and ripe Mangifera indica L. peel extracts. Food Chem Toxicol. 2010 Dec; 48(12):3406-11. Epub 2010 Sep 21.
  49. Zhang M, Xie Z, Gao W, Pu L, Wei J, Guo C. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. Nutr Res. 2016 Mar; 36(3):271-9.
  50. Torres N, Guevara-Cruz M, Velázquez-Villegas LA, Tovar AR. Nutrition and Atherosclerosis. Arch Med Res. 2015; 46(5):408–426.
  51. Thilakarathna SH, Rupasinghe HP, Needs PW. Apple peel bioactive rich extracts effectively inhibit in vitro human LDL cholesterol oxidation. Foo Chem. 2013 May; 138(1):463-70.
  52. Lenquiste SA, Batista AG, Marineli RS, Dragano NRV, Maróstica Jr MR. Freeze-dried jaboticaba peel added to high-fat diet increases HDL-cholesterol and improves insulin resistance in obese rats. Food Res Inter. 2012 Nov; 49(1): 153-160.
  53. Leite-Legatti AV, Batista AG, Dragano NRV, Marquesa AC, Malta LG, et al. Jaboticaba peel: Antioxidant compounds, antiproliferative and antimutagenic activities. Food Res Inter. 2012 Nov; 49(1):596-603.
  54. Suttirak W, Manurakchinakorn S. In vitro antioxidant properties of mangosteen peel extract. J Food Sci Technol. 2014 Dec; 51(12):3546-58.
  55. Rai PK, Mehta S, Watal G. Hypolipidaemic & hepatoprotective effects of Psidium guajava raw fruit peel in experimental diabetes. Indian J Med Res. 2010 Jun; 131:820-4.
  56. Kandandapani S, Balaraman AK, Ahamed HN. Extracts of passion fruit peel and seed of Passiflora edulis (Passifloraceae) attenuate oxidative stress in diabetic rats. Chin J Nat Med. 2015 Sep; 13(9):680-6.
  57. Miranda GS, Rennó LN, Machado BB, Silva JL, Pinto P, Oliveira MR. Efeito do consumo da aveia e farinha da casca de maracujá sobre a glicemia e lipemia em um grupo de voluntários. Rev Ciênc Farm Básica Apl. 2014 ;35(2):245-250.
  58. Queiroz MS, Janebro DI, da Cunha MA, Medeiros JS, Sabaa-Srur AU, Diniz MF, et al. Effect of the yellow pas-sion fruit peel flour (Passiflora edulis f. flavicarpa deg.) in insulin sensitivity in type 2 diabetes mellitus patients. Nutr J. 2012 Oct; 11(89):1-7.
  59. Lewis BJ, Herrlinger KA, Craig TA, Mehring-Franklin CE, Freitas Z, Hinojosa-Laborde C. Antihypertensive effect of passion fruit peel extract and its major bioactive components following acute supplementation in spontaneously hypertensive rats. J Nutr Biochem. 2013; 24(7):1359-1366.
  60. Silva DC, Freitas AL, Pessoa CD, Paula RC, Mesquita JX, Leal LK, et al. Pectin from Passiflora edulis shows anti-inflammatory action as well as hypoglycemic and hypotriglyceridemic properties in diabetic rats. J Med Food. 2011 Oct; 14(10):1118-26.
  61. Silva LMR, Figueiredo EAT, Ricardo NMPS, Vieira IGP, Figueiredo RW, Brasil IM, et al. Quantification of bioactive compounds in pulps and by-products of tropical fruits from Brazil. Food Chem. 2014 Jan; 143(15):398-404.
  62. Abreu WC, Lopes CO, Pinto KM, Oliveira LA, Carvalho GBM, Barcelo MFP. Características físico-químicas e atividade antioxidante total de pitaias vermelha e branca. Rev Instit Adolfo Lutz. 2012; 71(4):656-661.
  63. Gregoris E, Pereira Lima GP, Fabris S, Bertelle M, Sicari M, Stevanato R. Antioxidant properties of Brazilian tropical fruits by correlation between different assays. Biomed Res Int. 2013 Sep; 2013:1-8.
  64. Mello FR, Bernardo C, Dias CO, Gonzaga L, Amante ER, Fett R, et al. Antioxidant properties, quantification and stability of betalains from pitaya (Hylocereus undatus) peel. Ciênc Rural. 2015; 45(2):323-328.
  65. Song H, Chu Q, Xu D, Xu Y, Zheng X. Purified Betacyanins from Hylocereus undatus Peel Ameliorate Obesity and Insulin Resistance in High-Fat-Diet-Fed Mice. J Agric Food Chem. 2016 Jan; 64(1):236-44.
  66. Jung JS. Analysis of Volatile Compounds in the Root Peel, Stem Peel, and Fruit Peel of Pomegranate (Punica granatum) by TD GC/MS. Inter J Bio-Science Bio-Technology.2014; 6(3):169-182.
  67. Sadeghipour A, Eidi M,Kavgani AI, Ghahramani R, Shahabzadeh S, Anissian A . Lipid Lowering Effect of Punica granatum L. Peel in High Lipid Diet Fed Male Rats. Evid Based Complement Alternat Med. 2014; 2014.
  68. Amorim EG. Elaboração alternativa de produtos a partir de resíduos alimentares. Rev Eletr Cien. 2014; 7(1):50-60.
  69. Wang W, Zu Y, Fu Y, Efferth T. In vitro antioxidant and antimicrobial activity of extracts from Morus alba L. leaves, stems and fruits. Am J Chin Med. 2012; 40(2):349-56.
  70. El-Sayyad HI, El-Sherbiny MA, Sobh MA, Abou-El-Naga AM, Ibrahim MA, Mousa SA. Protective effects of Morus alba leaves extract on ocular functions of pups from diabetic and hypercholesterolemic mother rats. Int J Biol Sci. 2011; 7(6):715-28.
  71. Yang Y, Wang HQ, Chen RY. Flavonoids from the leaves of Morus alba L. Yao Xue Xue Bao. 2010 Jan; 45(1):77-81.
  72. Lee YJ, Choi DH, Kim EJ, Kim HY, Kwon TO, Kang DG, Lee HS. Hypotensive, hypolipidemic, and vascular protective effects of Morus alba L. in rats fed an atherogenic diet. Am J Chin Med. 2011;39(1):39-52.
  73. Sharma SB, Tanwar RS, Rini AC, Singh UR, Gupta S, Shukla SK. Protective effect of Morus rubra L. leaf extract on diet-induced atherosclerosis in diabetic rats. Indian J Biochem Biophys. 2010 Feb; 47(1):26-31.
  74. Rodríguez-Carpena JG, Morcuende D, Andrade MJ, Kylli P, Estévez M. Avocado (Persea americana Mill.) phenolics, in vitro antioxidant and antimicrobial activities, and inhibition of lipid and protein oxidation in porcine patties. J Agric Food Chem. 2011 May; 59(10):5625-35.
  75. Li ZH, Guo H, Xu WB, Ge J, Li X, Alimu M, He DJ. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC-ESI-QTOF-MS-MS. J Chromatogr Sci. 2016 May; 54(5):805-10.
  76. Durgo K, Belščak-Cvitanović A, Stančić A, Franekić J, Komes D. The bioactive potential of red raspberry (Rubus idaeus L.) leaves in exhibiting cytotoxic and cytoprotective activity on human laryngeal carcinoma and colon adenocarcinoma. J Med Food. 2012 Mar; 15(3):258-68.
  77. Barbalho SM, Souza MSS, Bueno PCS, Guiguer EL, Farinazzi-Machado FMV, et al. Annona montana Fruit and Leaves Improve the Glycemic and Lipid Profiles of Wistar Rats. J Med Food. 2012; 15(10):917–922.
  78. Liberal J, Francisco V, Costa G, Figueirinha A, Amaral MT, Marques C, et al. Bioactivity of Fragaria vesca leaves through inflammation, proteasome and autophagy modulation. J Ethnopharmacol. 2014 Dec; 158(partA):113-122.
  79. Das S, Barman S. Antidiabetic and antihyperlipidemic effects of ethanolic extract of leaves of Punica granatum in alloxan-induced non-insulin-dependent diabetes mellitus albino rats. Indian J Pharmacol. 2012 Mar; 44(2):219-24.
  80. Balwani S, Nandi D, Jaisankar P, Ghosh B. 2-Methylpyran-4-one-3-O-β-D-glucopyranoside isolated from leaves of Punica granatum inhibits the TNFα-induced cell adhesion molecules expression by blocking nuclear transcription factor-κB (NF-κB). Biochimie. 2011 May; 93(5):921-30.
  81. Bekir J, Mars M, Souchard JP, Bouajila J. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of pomegranate (Punica granatum) leaves. Food Chem Toxicol. 2013 May; 55:470-5.
  82. Ali B, Mujeeb M, Aeri V, Mir SR, Faiyazuddin M, Shakeel F. Anti-inflammatory and antioxidant activity of Ficus carica Linn. leaves. Nat Prod Res. 2012; 26(5):460-5.
  83. Orhan IE, Ustün O, Sener B. Estimation of cholinesterase inhibitory and antioxidant effects of the leaf extracts of Anatolian Ficus carica var. domestica and their total phenol and flavonoid contents. Nat Prod Commun. 2011 Mar; 6(3):375-8.
  84. Fagbohun TR, Odufuwa KT. Hypoglycemic Effect of Methanolic Extract of Anacardium occidentale leaves in Alloxan-Induced Diabetic Rats. Niger J Physiol Sci. 2010 Nov; 25(1):87-90.
  85. Barbalho SM, Bueno PCS, Delazari DS, Guiguer EL, Coqueiro DP, Araujo AC, Souza MSS, Farinazzi-Machado FMV, Mendes CG, Groppo M. Antidiabetic and Antilipidemic Effects of Manilkara zapota, J Med Food. 2015 March 18(3): 385-391.
  86. Omar HS, El-Beshbishy HA, Moussa Z, Taha KF, Singab AN. Antioxidant activity of Artocarpus heterophyllus Lam. (Jack Fruit) leaf extracts: remarkable attenuations of hyperglycemia and hyperlipidemia in streptozotocin-diabetic rats. ScientificWorldJournal. 2011 Apr; 11:788-800.
  87. Chackrewarthy S, Thabrew MI, Weerasuriya MK, Jayasekera S. Evaluation of the hypoglycemic and hypolipidemic effects of an ethylacetate fraction of Artocarpus heterophyllus (jak) leaves in streptozotocin-induced diabetic rats. Pharmacogn Mag. 2010 Jul; 6(23):186-90.

How to Cite

Farinazzi-Machado, F. M. V. (2022). Can the consumption of Seeds, Leaves and Fruit Peels avoid the risk factors for Cardiovascular Disorders?. International Journal of Nutrology, 10(2), 37–45. https://doi.org/10.1055/s-0040-1705287