Skip to main content Skip to main navigation menu Skip to site footer
Review
Published: 03-06-2022

Micronutrient Influence in Thyroid Function: A Review

Médica Endocrinologista com Título de Especialista pela Sociedade Brasileira de Endocrinologia e Metabologia, Campina Grande, Paraíba, PB, Brazil
iodine iron selenium thyroid zinc

Abstract

The thyroid produces and secretes adequate amounts of hormones that regulate various physiological processes, including growth, development, metabolism, and reproductive function. The production and metabolism of thyroid hormones are dependent on micronutrients such as iodine, selenium, zinc and iron. Iodine is essential for the proper synthesis of thyroid hormones. The risk of iodine deficiency is high in places where the food consumed comes from iodine-deficient sources. To avoid complications, various government strategies have been developed to enrich food with this element. Selenium is incorporated in the deiodinases, which are enzymes that also play an essential role in the metabolism of thyroid hormones, in addition to contributing to the antioxidant defense in the thyroid. Zinc participates in the process of deiodination, in addition to being necessary for the T3 receptor to adopt its biologically active confirmation. Iron is found in hemeproteins, including thyroid peroxidase (TPO), which participates in the first two stages of thyroid hormone biosynthesis. Deficiencies of these elements can impair thyroid function. In general, the influence of micronutrients on thyroid function reveals the need for more research to increase scientific knowledge so that preventive and therapeutic measures can be taken regarding thyroid dysfunctions, to maintain a healthy thyroid.

Metrics

Metrics Loading ...

References

  1. Gadelha PS, Montenegro RN. Interpretação dos Testes de Função Tireoidiana. In: Vilar L. Endocrinologia Clínica. 6ª ed. Rio de Janeiro: Guanabara Koogan; 2016: 233-240
  2. Cooper DS, Ladenson PW. Glândula Tireóide. In: Gardner DG, Shooback D. Endocrinologia Básica e Clínica de Greenspan. 9ª ed. Porto Alegre: AMGH; 2013: 163-226
  3. Sachdeva A, Singh V, Malik I, Roy PS, Madaan H, Nair R. Association between serum ferritin and thyroid hormone profile in hypothyroidism. Int J Med Sci Public Health 2015; 4: 863-865
  4. Khatiwada S, Gelal B, Baral N, Lamsal M. Association between iron status and thyroid function in Nepalese children. Thyroid Res 2016; 9: 2
  5. Perez CLS, Graf H. Fisiologia da Tireóide. In: Wajchenberg BL, Lerario AC, Betti RTB. Tratado de Endocrinologia Clínica. 2ªed. São Paulo: AC Farmacêutica; 2014: 66-75
  6. Larsen PR, Zavacki AM. The role of the iodothyronine deiodinases in the physiology and pathophysiology of thyroid hormone action. Eur Thyroid J 2012; 1 (04) 232-242
  7. Mezzomo TR, Nadal J. Efeito dos nutrientes e substâncias alimentares na função tireoidiana e no hipotireoidismo. Demetra 2016; 11 (02) 427-443
  8. Drutel A, Archambeaud F, Caron P. Selenium and the thyroid gland: more good news for clinicians. Clin Endocrinol (Oxf) 2013; 78 (02) 155-164
  9. Pearce EM. Iodine Deficiency in Children. Paediatric Thyroidology. Endocr Dev. Basel, Karger 2014; (26) 130-138
  10. Pontes AAN, Adan LFF. Interferência do iodo e alimentos bociogênicos no aparecimento e evolução das tireopatias. Rev. Bras. Ciênc Saúde (Porto Alegre) 2006; 10 (01) 81-86
  11. Zimmermann MB. Iodine deficiency. Endocr Rev 2009; 30 (04) 376-408
  12. Chung HR. Iodine and thyroid function. Ann Pediatr Endocrinol Metab 2014; 19 (01) 8-12
  13. Brasil. Ministério da Saúde. Departamento de Atenção Básica [Internet]. Prevenção e controle de agravos nutricionais: deficiência de iodo. [acesso em: 01 nov. 2018]. Disponível em: http://dab.saude.gov.br/portaldab/ape_pcan.php?conteudo=deficiencia_iodo
  14. Kahaly GJ, Dienes HP, Beyer J, Hommel G. Iodide induces thyroid autoimmunity in patients with endemic goitre: a randomised, double-blind, placebo-controlled trial. Eur J Endocrinol 1998; 139 (03) 290-297
  15. Li Y, Teng D, Shan Z. , et al. Antithyroperoxidase and antithyroglobulin antibodies in a five-year follow-up survey of populations with different iodine intakes. J Clin Endocrinol Metab 2008; 93 (05) 1751-1757
  16. Feldt-Rasmussen U. Iodine and cancer. Thyroid 2001; 11 (05) 483-486
  17. Du Y, Gao Y, Meng F. , et al. Iodine deficiency and excess coexist in china and induce thyroid dysfunction and disease: a cross-sectional study. PLoS One 2014; 9 (11) e111937
  18. Carvalho AL, Meirelles CJ, Oliveira LA, Costa TM, Navarro AM. Excessive iodine intake in schoolchildren. Eur J Nutr 2012; 51 (05) 557-562
  19. Brasil. Agência Nacional de Vigilância Sanitária. Resolução RDC n o 23, de 24 de abril de 2013. Diário Oficial da União 24 abril 2013
  20. World Health Organization, United Nations Children's Fund, International Council for the Control of Iodine Deficiency Disorders. Assessment of iodine deficiency disorders and monitoring their elimination. 2007;3rd ed. Geneva:
  21. Sun X, Shan Z, Teng W. Effects of increased iodine intake on thyroid disorders. Endocrinol Metab (Seoul) 2014; 29 (03) 240-247
  22. Abel MH, Korevaar TIM, Erlund I. , et al. Iodine Intake is Associated with Thyroid Function in Mild to Moderately Iodine Deficient Pregnant Women. Thyroid 2018; 28 (10) 1359-1371
  23. Triggiani V, Tafaro E, Giagulli VA. , et al. Role of iodine, selenium and other micronutrients in thyroid function and disorders. Endocr Metab Immune Disord Drug Targets 2009; 9 (03) 277-294
  24. Federige MAF, Romaldini JH, Miklos ABPP, Koike MK, Takei K, Portes ES. Serum selenium and selenoprotein-P levels in autoimmune thyroid diseases patients in a select center: a transversal study. Arch Endocrinol Metab 2017; 61 (06) 600-607
  25. Ventura M, Melo M, Carrilho F. Selenium and thyroid disease: From pathophysiology to treatment. Int J Endocrinol 2017; 2017: 1297658
  26. Pedersen IB, Knudsen N, Carlé A, Schomburg L, Kohrle J, Jørgensen T. Serum selenium is low in newly diagnosed Graves' disease: a population-based study. Horumon To Rinsho 2013; 0: 1-7
  27. Ibrahim HS, Rabeh NM, Elden AAS. Effect of Selenium and Zinc Supplementation on Hypothyroidism in Rats. ARC Nutrition Growth 2016; 2 (02) 16-27
  28. Parshukova O, Potolitsyna N, Shadrina V, Chernykh A, Bojko E. Features of selenium metabolism in humans living under the conditions of North European Russia. Int Arch Occup Environ Health 2014; 87 (06) 607-614
  29. Wu Q, Rayman MP, Lv H. , et al. Low population selenium status is associated with increased prevalence of thyroid disease. J Clin Endocrinol Metab 2015; 100 (11) 4037-4047
  30. Kandhro GA, Kazi TG, Afridi HI. , et al. Effect of zinc supplementation on the zinc level in serum and urine and their relation to thyroid hormone profile in male and female goitrous patients. Clin Nutr 2009; 28 (02) 162-168
  31. O'Kane SM, Mulhern MS, Pourshahidi LK, Strain JJ, Yeates AJ. Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review. Nutr Rev 2018; 76 (06) 418-431
  32. Winther KH, Bonnema SJ, Cold F. , et al. Does selenium supplementation affect thyroid function? Results from a randomized, controlled, double-blinded trial in a Danish population. Eur J Endocrinol 2015; 172 (06) 657-667
  33. Nordio M, Pajalich R. Combined treatment with Myo-inositol and selenium ensures euthyroidism in subclinical hypothyroidism patients with autoimmune thyroiditis. J Thyroid Res 2013; 2013: 424163
  34. Pizzulli A, Ranjbar A. Selenium deficiency and hypothyroidism: a new etiology in the differential diagnosis of hypothyroidism in children. Biol Trace Elem Res 2000; 77 (03) 199-208
  35. Duntas LH, Benvenga S. Selenium: an element for life. Endocrine 2015; 48 (03) 756-775
  36. Wang L, Wang B, Chen SR. , et al. Effect of Selenium Supplementation on Recurrent Hyperthyroidism Caused by Graves' Disease: A Prospective Pilot Study. Horm Metab Res 2016; 48 (09) 559-564
  37. Zheng H, Wei J, Wang L. , et al. Effects of Selenium Supplementation on Graves' Disease: A Systematic Review and Meta-Analysis. Evid Based Complement Alternat Med 2018; 2018: 3763565
  38. Kahaly GJ, Riedl M, König J, Diana T, Schomburg L. Double-Blind, Placebo-Controlled, Randomized Trial of Selenium in Graves Hyperthyroidism. J Clin Endocrinol Metab 2017; 102 (11) 4333-4341
  39. Leo M, Bartalena L, Rotondo Dottore G. , et al. Effects of selenium on short-term control of hyperthyroidism due to Graves' disease treated with methimazole: results of a randomized clinical trial. J Endocrinol Invest 2017; 40 (03) 281-287
  40. Marcocci C, Kahaly GJ, Krassas GE. , et al; European Group on Graves' Orbitopathy. Selenium and the course of mild Graves' orbitopathy. N Engl J Med 2011; 364 (20) 1920-1931
  41. Bartalena L, Baldeschi L, Boboridis K. , et al; European Group on Graves' Orbitopathy (EUGOGO). The 2016 European Thyroid Association/European Group on Graves' Orbitopathy Guidelines for the Management of Graves' Orbitopathy. Eur Thyroid J 2016; 5 (01) 9-26
  42. Kaprara A, Krassas GE. [Selenium and thyroidal function; the role of immunoassays]. Hell J Nucl Med 2006; 9 (03) 195-203
  43. Souza ML, Menezes HC. Processamentos de amêndoa e torta de castanha-do-brasil e farinha de mandioca: parâmetros de qualidade. Food Sci Technol (Campinas) 2004; 24 (01) 120-128
  44. Andrade GRG, Gorgulho B, Lotufo PA, Bensenor IM, Marchioni DM. Dietary Selenium Intake and Subclinical Hypothyroidism: A Cross-Sectional Analysis of the ELSA-Brasil Study. Nutrients 2018; 10 (06) 693
  45. Ferreira KS, Gomes JC, Bellato CR, Jordão CP. Concentrações de selênio em alimentos consumidos no Brasil. Pan Am J Public Health 2002; 11 (03) 172-177
  46. Cozzolino SF. Deficiências de minerais. Estud Av 2007; 21 (60) 119-126
  47. Cruz JBF, Soares HF. Uma revisão sobre o zinco. Ensaios e Ciência: Ciências Biológicas. Agrárias e da Saúde 2011; 15 (01) 207-222
  48. Rabeh NM, El-Ghandour HA. Effect of Iron, Zinc, Vitamin E and Vitamin C Supplementation on Thyroid Hormones in Rats with Hypothyroidism. Int J Nutr Food Sci 2016; 5 (03) 201-221
  49. Khanam S. Impact of zinc on thyroid metabolism. J Diabetes Metab Disord Control 2018; 5 (01) 00134
  50. Nishiyama S, Futagoishi-Suginohara Y, Matsukura M. , et al. Zinc supplementation alters thyroid hormone metabolism in disabled patients with zinc deficiency. J Am Coll Nutr 1994; 13 (01) 62-67
  51. Kelly GS. Peripheral metabolism of thyroid hormones: a review. Altern Med Rev 2000; 5 (04) 306-333
  52. Maxwell C, Volpe SL. Effect of zinc supplementation on thyroid hormone function. A case study of two college females. Ann Nutr Metab 2007; 51 (02) 188-194
  53. Sinha S, Kar K, Dasgupta A, Basu S, Sem S. Correlation of Serum zinc with TSH in hyperthyroidism. Asian J Med Sci 2016; 7 (01) 66-69
  54. Institute of Medicine (US). Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Washington, D.C.: The National Academic Press; 2001
  55. Universidade Estadual de Campinas. Núcleo de Estudos e Pesquisas em Alimentação. Tabela Brasileira de Composição de Alimentos - TACO. 4a ed. Campinas: NEPA-UNICAMP; 2011
  56. Instituto Brasileiro de Geografia e Estatística. Pesquisa de orçamentos familiares: POF 2008–2009. Análise do consumo alimentar pessoal no Brasil. Rio de Janeiro: IBGE; 2011
  57. Germano RMA, Canniatti-Brazaca SG. Importance of iron in human nutrition. J Brazilian Soc Food Nutr 2002; 24: 85-104
  58. Dahiya K, Verma M, Dhankhar R. , et al. Thyroid profile and iron metabolism: mutual relationship in hypothyroidism. Biomed Res 2016; 27 (04) 1212-1215
  59. Shukla A, Agarwai S, Gupta A, Sarkar G. Relationship between Body Iron Status and Thyroid Profile in an Adult Population: A Hospital Based Study. Natl J Lab Med 2017; (02) 1
  60. Metwalley KA, Farghaly HS, Hassan AF. Thyroid status in Egyptian primary school children with iron deficiency anemia: Relationship to intellectual function. Thyroid Res Pract 2013; 10: 91-95
  61. Akhter S, Nahar ZU, Parvin S, Alam A, Sharmin S, Arslan MI. Thyroid status in patients with low serum ferritin level. Bangladesh J Med Biochem 2012; 5 (01) 5-11
  62. Cinemre H, Bilir C, Gokosmanoglu F, Bahcebasi T. Hematologic effects of levothyroxine in iron-deficient subclinical hypothyroid patients: a randomized, double-blind, controlled study. J Clin Endocrinol Metab 2009; 94 (01) 151-156
  63. Ravanbod M, Asadipooya K, Kalantarhormozi M, Nabipour I, Omrani GR. Treatment of iron-deficiency anemia in patients with subclinical hypothyroidism. Am J Med 2013; 126 (05) 420-424
  64. El-Masry HM, Hamed AM, Hassan MH, Fayed HM, Abdelzaher MH. Thyroid Function among Children with Iron Deficiency Anaemia: Pre and Post Iron Replacement Therapy. J Clin Diagn Res 2018; 12 (01) BC01-BC05
  65. Li S, Gao X, Wei Y, Zhu G, Yang C. The Relationship between Iron Deficiency and Thyroid Function in Chinese Women during Early Pregnancy. J Nutr Sci Vitaminol (Tokyo) 2016; 62 (06) 397-401

How to Cite

Nóbrega, A. G. C. (2022). Micronutrient Influence in Thyroid Function: A Review. International Journal of Nutrology, 12(2), 52–60. https://doi.org/10.1055/s-0039-3402028