Skip to main content Skip to main navigation menu Skip to site footer
Review
Published: 2022-10-31

Major approaches to melatonin and nutrients regulation in the bone regeneration process with exosomes and microRNAs: a systematic review

Sports Clinic and Hospital Israelita Albert Einstein, Goiânia, Goiás, Brazil
Bone diseases Bone regeneration Cartilage regeneration Melatonin. Nutrients Exosomes MicroRNAs

Abstract

Introduction: Bone diseases comprise a large group of common diseases, including fractures, osteoporosis, and osteoarthritis that affect a large number of individuals. Without intervention, the prevalence of osteopenia is projected to increase to 64.3 million Americans and that of osteoporosis to 11.9 million by the year 2030. Melatonin exerts numerous physiological effects, including the induction of anti-inflammatory and antioxidants, resetting circadian rhythms, and promoting wound healing and tissue regeneration, participating in the maintenance and regenerative processes of bones and cartilage. Objective: A systematic review was carried out to present the state of the art of melatonin regulation, mesenchymal stem cells, exosomes, microRNAs, and nutrients in the bone regeneration process. Methods: The systematic review rules (PRISMA) were followed. The search was carried out from July to September 2022 in the Scopus, PubMed, Science Direct, Scielo, and Google Scholar databases, using scientific articles from 2019 to 2022. The quality of the studies was based on the GRADE instrument and the risk of bias was analyzed according to the Cochrane instrument. Results and Conclusion: A total of 126 articles were found. A total of 59 articles were fully evaluated and 46 were included in this systematic review. Considering the Cochrane tool for risk of bias, the overall assessment resulted in 9 studies at high risk of bias and 24 studies that did not meet the GRADE. Most studies showed homogeneity in their results, with I2 =97.8%>50%. The symmetrical funnel plot does not suggest a risk of bias between small sample-size studies. Based on the results, melatonin has important functions in regulating the regenerative activities of mesenchymal stem cells that modulate, together with nutrients, the activities of exosomes and microRNAs in the bone regeneration process.

Metrics

Metrics Loading ...

References

  1. Maria S, Witt-Enderby PA. Melatonin effects on bone: Potential use for the prevention and treatment for osteopenia, osteoporosis, and periodontal disease and for use in bone-grafting procedures. J Pineal Res. 2014;56:115–125. doi: 10.1111/jpi.12116.
  2. Lu X, Yu S, Chen G, Zheng W, Peng J, Huang X, Chen L. Insight into the roles of melatonin in bone tissue and bone related diseases (Review). Int J Mol Med. 2021 May;47(5):82. doi: 10.3892/ijmm.2021.4915. Epub 2021 Mar 24. PMID: 33760138; PMCID: PMC7979260.
  3. Pivonello C, Negri M, Patalano R, Amatrudo F, Montò T, Liccardi A, Graziadio C, Muscogiuri G, Pivonello R, Colao A. The role of melatonin in the molecular mechanisms underlying metaflammation and infections in obesity: A narrative review. Obes Rev. 2022 Mar;23(3):e13390. doi: 10.1111/obr.13390. Epub 2021 Dec 3. PMID: 34861097; PMCID: PMC9285339.
  4. Boga JA, Caballero B, Potes Y, Perez-Martinez Z, Reiter RJ, Vega-Naredo I, Coto-Montes A. Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J Pineal Res. 2019 Jan;66(1):e12534. doi: 10.1111/jpi.12534. Epub 2018 Nov 26.
  5. Guan Q, Wang Z, Cao J, Dong Y, Chen Y. Mechanisms of Melatonin in Obesity: A Review. Int J Mol Sci. 2021 Dec 25;23(1):218. doi: 10.3390/ijms23010218.
  6. Delpino FM, Figueiredo LM. Melatonin supplementation and anthropometric indicators of obesity: A systematic review and meta-analysis. Nutrition. 2021 Nov-Dec;91-92:111399. doi: 10.1016/j.nut.2021.111399. Epub 2021 Jun 24. PMID: 34626955.
  7. Baron KG, Reid KJ, Wolfe LF, Attarian H, Zee PC. Phase Relationship between DLMO and Sleep Onset and the Risk of Metabolic Disease among Normal Weight and Overweight/Obese Adults. J Biol Rhythms. 2018 Feb;33(1):76-83. doi: 10.1177/0748730417745914.
  8. Cardinali DP, Vigo DE. Melatonin, mitochondria, and the metabolic syndrome. Cell Mol Life Sci. 2017 Nov;74(21):3941-3954. doi: 10.1007/s00018-017-2611-0. Epub 2017 Aug 17.
  9. Rao PV. Type 2 diabetes in children: clinical aspects and risk factors. Indian J Endocrinol Metab 2015; 19(Suppl1): S47-S50.
  10. Milcu I, Nanu L, Marcean R et al. The action of pineal extract and epiphysectomy on hepatic and muscular glycogen after prolonged infusion of glucose. Stud Cercet Endocrinol 1963; 14: 651-655.
  11. Chacón-Martínez CA et al. (2017) Hair follicle stem cell cultures reveal self-organizing plasticity of stem cells and their progeny. EMBO J. 36, 151–164.
  12. Rodríguez-Colman, M.J. et al. (2017) Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543, 424.
  13. Snoeck, H.W. (2017) Mitochondrial regulation of hematopoietic stem cells. Curr. Opin. Cell Biol. 49, 91–98.
  14. Zheng, X. et al. (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Elife 5, e13374.
  15. Flores, A. et al. (2017) Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 19, 1017–1026.
  16. Rinschen MM. et al. (2019) Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 20, 353–367.
  17. Agathocleous, M. et al. (2017) Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 549, 476–481.
  18. Shapira SN, Christofk HR. Metabolic Regulation of Tissue Stem Cells. Trends Cell Biol. 2020 Jul;30(7):566-576. doi: 10.1016/j.tcb.2020.04.004. Epub 2020 Apr 28. PMID: 32359707.
  19. Davies SK, Ang JE, Revell VL, Holmes B, Mann A, Robertson FP, Cui N, Middleton B, Ackermann K, Kayser M, Thumser AE, Raynaud FI, Skene DJ. Effect of sleep deprivation on the human metabolome. Proc Natl Acad Sci U S A. 2014 Jul 22;111(29):10761-6. doi: 10.1073/pnas.1402663111. Epub 2014 Jul 7.
  20. Al-Sarraf IAK, Kasabri V, Akour A, Naffa R. Melatonin and cryptochrome 2 in metabolic syndrome patients with or without diabetes: a cross-sectional study. Horm Mol Biol Clin Investig. 2018 May 29;35(2). pii: /j/hmbci.2018.35.issue-2/hmbci-2018-0016/hmbci-2018-0016.xml. doi: 10.1515/hmbci-2018-0016.
  21. Tan DX, Manchester LC, Hardeland R, Lopez-Burillo S, Mayo JC, Sainz RM, Reiter RJ. Melatonin: A hormone, a tissue factor, an autocoid, a paracoid, and an antioxidant vitamin. J Pineal Res. 2003;34:75–78. doi: 10.1034/j.1600-079X.2003.02111.x.
  22. Permuy M, López-Peña M, González-Cantalapiedra A, Muñoz F. Melatonin: A review of its potential functions and effects on dental diseases. Int J Mol Sci. 2017;18:865. doi: 10.3390/ijms18040865.
  23. Amaral FGD, Cipolla-Neto J. A brief review about melatonin, a pineal hormone. Arch Endocrinol Metab. 2018;62:472–479. doi: 10.20945/2359-3997000000066.
  24. Tordjman S, Chokron S, Delorme R, Charrier A, Bellissant E, Jaafari N, Fougerou C. Melatonin: Pharmacology, functions and therapeutic benefits. Curr Neuropharmacol. 2017;15:434–443. doi: 10.2174/1570159X14666161228122115.
  25. Egermann M, Gerhardt C, Barth A, Maestroni GJ, Schneider E, Alini M. Pinealectomy affects bone mineral density and structure-an experimental study in sheep. BMC Musculoskelet Disord. 2011;12:271. doi: 10.1186/1471-2474-12-271.
  26. Pines A. Circadian rhythm and menopause. Climacteric. 2016;19:551–552. doi: 10.1080/13697137.2016.1226608.
  27. Sack RL, Lewy AJ, Erb DL, Vollmer WM, Singer CM. Human melatonin production decreases with age. J Pineal Res. 1986;3:379–388. doi: 10.1111/j.1600-079X.1986.tb00760.x.
  28. Satomura K, Tobiume S, Tokuyama R, Yamasaki Y, Kudoh K, Maeda E, Nagayama M. Melatonin at pharmacological doses enhances human osteoblastic differentiation in vitro and promotes mouse cortical bone formation in vivo. J Pineal Res. 2007;42:231–239. doi: 10.1111/j.1600-079X.2006.00410.x.
  29. Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol. 2016;12:580–592. doi: 10.1038/nrrheum.2016.136.
  30. Liu-Bryan R, Terkeltaub R. Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol. 2015;11:35–44. doi: 10.1038/nrrheum.2014.162.
  31. Gao B, Gao W, Wu Z, Zhou T, Qiu X, Wang X, Lian C, Peng Y, Liang A, Qiu J, et al. Melatonin rescued interleukin 1β-impaired chondrogenesis of human mesenchymal stem cells. Stem Cell Res Ther. 2018;9:162. doi: 10.1186/s13287-018-0892-3.
  32. Zhang Y, Lin J, Zhou X, Chen X, Chen AC, Pi B, Pan G, Pei M, Yang H, Liu T, He F. Melatonin prevents osteoarthritis-induced cartilage degradation via targeting MicroRNA-140. Oxid Med Cell Longev. 2019;2019:9705929. doi: 10.1155/2019/9705929.
  33. Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H, Mehrzadi S. Apoptosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res. 2016;61:411–425. doi: 10.1111/jpi.12362.
  34. Nugent M. MicroRNAs: Exploring new horizons in osteoarthritis. Osteoarthritis Cartilage. 2016;24:573–580. doi: 10.1016/j.joca.2015.10.018. [PubMed] [CrossRef] [Google Scholar]
  35. Miyaki S, Asahara H. Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol. 2012;8:543–552. doi: 10.1038/nrrheum.2012.128.
  36. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S, Kato Y, Takemoto F, Nakasa T, Yamashita S, et al. MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev. 2010;24:1173–1185. doi: 10.1101/gad.1915510.
  37. Si HB, Zeng Y, Liu SY, Zhou ZK, Chen YN, Cheng JQ, Lu YR, Shen B. Intra-articular injection of microRNA-140 (miRNA-140) alleviates osteoarthritis (OA) progression by modulating extracellular matrix (ECM) homeostasis in rats. Osteoarthritis Cartilage. 2017;25:1698–1707. doi: 10.1016/j.joca.2017.06.002.
  38. Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A, Kato Y, Sato T, Lotz MK, Asahara H. MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum. 2009;60:2723–2730. doi: 10.1002/art.24745.
  39. Karlsen TA, de Souza GA, Ødegaard B, Engebretsen L, Brinchmann JE. microRNA-140 inhibits inflammation and stimulates chondrogenesis in a model of interleukin 1β-induced osteoarthritis. Mol Ther Nucleic Acids. 2016;5:e373. doi: 10.1038/mtna.2016.64.
  40. Wu Z, Qiu X, Gao B, Lian C, Peng Y, Liang A, Xu C, Gao W, Zhang L, Su P, et al. Melatonin-mediated miR-526b-3p and miR-590-5p upregulation promotes chondrogenic differentiation of human mesenchymal stem cells. J Pineal Res. 2018;65:e12483. doi: 10.1111/jpi.12483.
  41. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini FC, Krause DS, Deans RJ, Keating A, Procko DJ, Horwitz EM. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006, v. 8, n. 4, p. 315-317.
  42. Zuk PA, Zhu M, Ashjian P. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell; 13: 4279–4295, 2002.
  43. Caplan AI, Buder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med; 7: 259-64, 2001.
  44. Thery C, Boussac M, Veron P, Ricciardi-Castagnoli P, Raposo G, Garin J, et al., Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles, J. Immunol. 166 (2001) 7309–7318.
  45. Baharlooi H, Nouraei Z, Azimi M, Moghadasi AN, Tavassolifar MJ, Moradi B, Sahraian MA, Izad M. Umbilical cord mesenchymal stem cells as well as their released exosomes suppress proliferation of activated PBMCs in multiple sclerosis. Scand J Immunol. 2020 Dec 18:e13013. doi: 10.1111/sji.13013. Epub ahead of print. PMID: 33338274.
  46. Mears R, Craven RA, Hanrahan S, Totty N, Upton C, Young SL, et al., Proteomic analysis of melanoma-derived exosomes by two-dimensional polyacrylamide gel electrophoresis and mass spectrometry, Proteomics 4 (2004) 4019–4031, https://doi.org/10.1002/pmic.200400876.
  47. R. Gastpar, M. Gehrmann, M.A. Bausero, A. Asea, C. Gross, J.A. Schroeder, et al., Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells, Cancer Res. 65 (2005) 5238–5247, https://doi.org/10.1158/0008-5472.can-04-3804.
  48. W. Xu, Z. Yang, N. Lu, From pathogenesis to clinical application: insights into exosomes as transfer vectors in cancer, J. Exp. Clin. Cancer Res. 35 (2016) 156, https://doi.org/10.1186/s13046-016-0429-5.
  49. H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J.J. Lee, J.O. Lotvall, Exosomemediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells, Nat. Cell Biol. 9 (2007) 654–659, https://doi.org/10.1038/ncb1596.
  50. B. Zhang, L. Shen, H. Shi, Z. Pan, L. Wu, Y. Yan, et al., Exosomes from Human Umbilical Cord Mesenchymal Stem Cells: Identification, Purification, and Biological Characteristics, 2016, p. 1929536, https://doi.org/10.1155/2016/1929536.
  51. Zhuang G, Mao J, Yang G, Wang H. Influence of different incision designs on bone increment of guided bone regeneration (Bio-Gide collagen membrane +Bio-OSS bone powder) during the same period of maxillary anterior tooth implantation. Bioengineered. 2021 Dec;12(1):2155-2163. doi: 10.1080/21655979.2021.1932209. PMID: 34057023.
  52. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R: Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 2009, 38 : 201-209.
  53. Zotarelli Filho IJ, Frascino LF, Greco OT, Araujo JDD, Bilaqui A, Kassis EN, Ardito RV and Bonilla-Rodriguez GO. Chitosan-collagen scaffolds can regulate the biological activities of adipose mesenchymal stem cells for tissue engineering. J Regen Med Tissue Eng. 2013; 2:12. http://dx.doi.org/10.7243/2050-1218-2-12.
  54. Egido-Moreno S, Valls-Roca-Umbert J, Céspedes-Sánchez JM, López-López J, Velasco-Ortega E. Clinical Efficacy of Mesenchymal Stem Cells in Bone Regeneration in Oral Implantology. Systematic Review and Meta-Analysis. Int J Environ Res Public Health. 2021 Jan 21;18(3):894. doi: 10.3390/ijerph18030894.
  55. Liang W, Han B, Hai Y, Sun D, Yin P. Mechanism of Action of Mesenchymal Stem Cell-Derived Exosomes in the Intervertebral Disc Degeneration Treatment and Bone Repair and Regeneration. Front Cell Dev Biol. 2022 Jan 14;9:833840. doi: 10.3389/fcell.2021.833840.
  56. Shapira SN, Christofk HR. Metabolic Regulation of Tissue Stem Cells. Trends Cell Biol. 2020 Jul;30(7):566-576. doi: 10.1016/j.tcb.2020.04.004. Epub 2020 Apr 28. PMID: 32359707.
  57. Lewis, B.A. et al. Human RNA polymerase II promoter recruitment in vitro is regulated by O-linked N-acetylglucosaminyltransferase (OGT). J. Biol. Chem. 2016, 291, 14056–14061.
  58. Shanmugavadivu A, Balagangadharan K, Selvamurugan N. Angiogenic and osteogenic effects of flavonoids in bone regeneration. Biotechnol Bioeng. 2022 Sep;119(9):2313-2330. doi: 10.1002/bit.28162.
  59. Nastri L, Moretti A, Migliaccio S, Paoletta M, Annunziata M, Liguori S, Toro G, Bianco M, Cecoro G, Guida L, Iolascon G. Do Dietary Supplements and Nutraceuticals Have Effects on Dental Implant Osseointegration? A Scoping Review. Nutrients. 2020 Jan 20;12(1):268. doi: 10.3390/nu12010268.

How to Cite

Leite, D. G. (2022). Major approaches to melatonin and nutrients regulation in the bone regeneration process with exosomes and microRNAs: a systematic review. International Journal of Nutrology, 15(3). https://doi.org/10.54448/ijn22309