Skip to main content Skip to main navigation menu Skip to site footer
Published: 08-25-2022

First 2,200 days of life as a window of opportunity for multidisciplinary action regarding the developmental origin of health and disease: positioning of the Brazilian Association of Nutrology

UFSCAR - Federal University of Sao Carlos, department of medicine, Sao Carlos, Sao Paulo, Brazil
UNIFIPA - Padre Albino University Center and Faculty of Medicine of Catanduva (FAMECA), Catanduva, São Paulo, Brazil
UFTM - Federal University of Triângulo Mineiro, Minas Gerais, Brazil
USP/FMRP - Department of Health Sciences, Division of Nutrition and Metabolism, Faculty of Medicine of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
USP - Nutrition Course at the Faculty of Medicine of Ribeirão Preto, Ribeirão Preto, São Paulo, Brazil
Neurokids Institute, Ribeirão Preto, São Paulo, Brazil
ABC - Faculty of Medicine, Santo André, São Paulo, Brazil
UNIFESP - Federal University of Sao Paulo and Center of Excellence in Eating Difficulties of PENSI Institute, Sao Paulo, Brazil
Saúde infantil Saúde pré-concepcional Saúde gestacional Saúde pósgestacional Child health Preconception health Gestational health Post-gestational health


Introduction: From the beginning of the 21st century, a new concept began to emerge in scientific and social circles: the first 1,000 days of life. Along the same lines, an international movement started in the same period began to discuss the “developmental origin of health and disease”. Numerous problems that affect human beings throughout their life cycle begin in the early years and often can be avoided or minimized when early recognized and addressed. This document discusses, based on the scientific literature, the idea of expanding the window of opportunity for 2,200 days, encompassing the preconception phase to the end of the fifth year of life. Methods: Scientific articles published up to 2022 in Pubmed/Medline, SciELO, Google Scholar, and Lilacs databases, in Portuguese, English, and Spanish, were reviewed in an integrative manner. The search for articles was directed to topics related to intervention targets that could impact the present and future health of the child. Results: Biological, social and psychological aspects were studied in five phases: preconception, gestational, first year, second year, and third to the fifth year of life. The data obtained show the importance of expanding the period of greater professional attention at the beginning of life. Conclusion: The Brazilian Association of Nutrology recommends a window of 2,200 days (100 days in preconception + 270 days of gestation + 1,830 days from the first to the fifth year of life) as the ideal period of professional activity to guarantee present and children's future.


Metrics Loading ...


  1. Arabena K. The First 1000 Days: catalysing equity outcomes for Aboriginal and Torres Strait Islander children. Med J Aust. 2014;200(8):442.
  2. Bollati V, Rota F. [The epigenetic relevance of the first 1,000 days]. Epidemiol Prev. 2018;42(3-4):255-256.
  3. Burke RM, Leon JS, Suchdev PS. Identification, prevention and treatment of iron deficiency during the first 1000 days. Nutrients. 2014;6(10):4093-4114.
  4. Elmadfa I, Meyer AL. Vitamins for the first 1000 days: preparing for life. Int J Vitam Nutr Res. 2012;82(5):342-347.
  5. Enos MK, Burton JP, Dols J, Buhulata S, Changalucha J, Reid G. Probiotics and nutrients for the first 1000 days of life in the developing world. Benef Microbes. 2013;4(1):3-16.
  6. Kattula D, Sarkar R, Sivarathinaswamy P, Velusamy V, Venugopal S, Naumova EN, et al. The first 1000 days of life: prenatal and postnatal risk factors for morbidity and growth in a birth cohort in southern India. BMJ Open. 2014;4(7):e005404.
  7. Possner M. [The first 1,000 days - an important period for our lifelong health]. Kinderkrankenschwester. 2015;34(10):382-387.
  8. Dean SV, Lassi ZS, Imam AM, Bhutta ZA. Preconception care: closing the gap in the continuum of care to accelerate improvements in maternal, newborn and child health. Reprod Health. 2014;11 Suppl 3(Suppl 3):S1.
  9. Cohen Kadosh K, Muhardi L, Parikh P, Basso M, Jan Mohamed HJ, Prawitasari T, et al. Nutritional Support of Neurodevelopment and Cognitive Function in Infants and Young Children-An Update and Novel Insights. Nutrients. 2021;13(1).
  10. Enav H, Bäckhed F, Ley RE. The developing infant gut microbiome: A strainlevel view. Cell Host Microbe. 2022;30(5):627-638.
  11. Bateson P, Barker D, Clutton-Brock T, Deb D, D'Udine B, Foley RA, et al. Developmental plasticity and human health. Nature. 2004;430(6998):419-421.
  12. Gluckman PD, Hanson MA, Cooper C, Thornburg KL. Effect of In Utero and Early-Life Conditions on Adult Health and Disease. New England Journal of Medicine. 2008;359(1):61-73.
  13. Stephenson J, Schoenaker DAJM, Hinton W, Poston L, Barker M, Alwan NA, et al. A wake-up call for preconception health: a clinical review. British Journal of General Practice. 2021;71(706):233.
  14. Ross PJ, Canovas S. Mechanisms of epigenetic remodelling during preimplantation development. Reproduction, Fertility and Development. 2016;28(2).
  15. Marcho C, Oluwayiose OA, Pilsner JR. The preconception environment and sperm epigenetics. Andrology. 2020;8(4):924-942.
  16. Hoek J, Schoenmakers S, Baart EB, Koster MPH, Willemsen SP, van Marion ES, et al. Preconceptional Maternal Vegetable Intake and Paternal Smoking Are Associated with Pre-implantation Embryo Quality. Reproductive Sciences. 2020;27(11):2018-2028.
  17. O’Brien AP, Hurley J, Linsley P, McNeil KA, Fletcher R, Aitken JR. Men’s Preconception Health: A Primary Health-Care Viewpoint. American Journal of Men's Health. 2018;12(5):1575-1581.
  18. Watkins AJ, Rubini E, Hosier ED, Morgan HL. Paternal programming of offspring health. Early Human Development. 2020;150.
  19. Doran CM, Woods-Townsend K, Hardy-Johnson P, Bagust L, Barker M, Davey H, et al. A cluster-randomised controlled trial of the LifeLab education intervention to improve health literacy in adolescents. Plos One. 2021;16(5).
  20. Spry E, Moreno-Betancur M, Becker D, Romaniuk H, Carlin JB, Molyneaux E, et al. Maternal mental health and infant emotional reactivity: a 20-year two-cohort study of preconception and perinatal exposures. Psychological Medicine. 2019;50(5):827-837.
  21. Class QA, Khashan AS, Lichtenstein P, Långström N, D’Onofrio BM. Maternal Stress and Infant Mortality. Psychological Science. 2013;24(7):1309-1316.
  22. Harris ML, Hure AJ, Holliday E, Chojenta C, Anderson AE, Loxton D. Association between preconception maternal stress and offspring birth weight: findings from an Australian longitudinal data linkage study. BMJ Open. 2021;11(3).
  23. Fleming TP, Watkins AJ, Velazquez MA, Mathers JC, Prentice AM, Stephenson J, et al. Origins of lifetime health around the time of conception: causes and consequences. The Lancet. 2018;391(10132):1842-1852.
  24. Yee LM, Silver RM, Haas DM, Parry S, Mercer BM, Iams J, et al. Quality of periconceptional dietary intake and maternal and neonatal outcomes. American Journal of Obstetrics and Gynecology. 2020;223(1):121.e121-121.e128.
  25. Fisberg M, Duarte Batista L, Nogueira-de-Almeida CA, Sarti FM, Albuquerque MPd, Fisberg RM. Integrative Strategies for Preventing Nutritional Problems in the Development of Children in Brazil. Frontiers in Nutrition. 2021;8.
  26. Krukowski RA, Jacobson LT, John J, Kinser P, Campbell K, Ledoux T, et al. Correlates of Early Prenatal Care Access among U.S. Women: Data from the Pregnancy Risk Assessment Monitoring System (PRAMS). Maternal and Child Health Journal. 2021;26(2):328-341.
  27. Landeen LB, Bogue R, Schuneman M. Preconception and prenatal care--useful tools for providers of women's health. S D Med. 2015;Spec No(36-43.
  28. Moos M-K, Dunlop AL, Jack BW, Nelson L, Coonrod DV, Long R, et al. Healthier women, healthier reproductive outcomes: recommendations for the routine care of all women of reproductive age. American Journal of Obstetrics and Gynecology. 2008;199(6):S280-S289.
  29. WHO. Recomendações da OMS sobre cuidados pré-natais para uma experiência positiva na gravidez Geneva: WHO - Orgnização Mundial da Saúde; 2016 [10]. Available from:
  30. Beluska-Turkan K, Korczak R, Hartell B, Moskal K, Maukonen J, Alexander DE, et al. Nutritional Gaps and Supplementation in the First 1000 Days. Nutrients. 2019;11(12).
  31. Mousa A, Naqash A, Lim S. Macronutrient and Micronutrient Intake during Pregnancy: An Overview of Recent Evidence. Nutrients. 2019;11(2).
  32. Caro R, Fast J. Pregnancy myths and practical tips. American Family Physician. 2020;102(7):420-426.
  33. ACOG. Obesity in Pregnancy: ACOG Practice Bulletin, Number 230. Obstet Gynecol. 2021;137(6):e128-e144.
  34. Catalano PM, Shankar K. Obesity and pregnancy: mechanisms of short term and long term adverse consequences for mother and child. Bmj. 2017;10.1136/bmj.j1.
  35. BRASIL. Saúde da Criança: crescimento e desenvolvimento. Brasília, DF: Ministério da Saúde. Secretaria de Atenção a Saúde. Departamento de Atenção a Saúde; 2012. Contract No.: 33.
  36. Weffort VRS, Ued FV. Avaliação antropométrica e nutrologica. In: Weffort VRS, Lamounier JA, editors. Nutrição em Pediatria: da neonatologia à adolescência. 2 ed. Barueri, SP: Manole; 2017.
  37. Koletzko B, Brands B, Grote V, Kirchberg FF, Prell C, Rzehak P, et al. LongTerm Health Impact of Early Nutrition: The Power of Programming. Annals of Nutrition and Metabolism. 2017;70(3):161-169.
  38. Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, Giugliani E, et al. What works? Interventions for maternal and child undernutrition and survival. The Lancet. 2008;371(9610):417-440.
  39. WHO. Essential Nutrition Actions: Improving Maternal, Newborn, Infant and Young Child Health and Nutrition. Geneva: World Health Organization; 2013.
  40. WHO. Report of the Commission on Ending Childhood Obesity. Implementation plan: executive summary. Geneva: World Health Organization; 2017. Contract No.: CC BY-NC-SA 3.0 IGO,
  41. WHO. Obesity and overweight: World Health Organization; 2020
  42. Bergmeier H, Paxton SJ, Milgrom J, Anderson SE, Baur L, Hill B, et al. Early mother-child dyadic pathways to childhood obesity risk: A conceptual model. Appetite. 2020;144.
  43. Black MM, Pérez-Escamilla R, Fernandez Rao S. Integrating Nutrition and Child Development Interventions: Scientific Basis, Evidence of Impact, and Implementation Considerations. Advances in Nutrition. 2015;6(6):852-859.
  44. Swinburn BA, Kraak VI, Allender S, Atkins VJ, Baker PI, Bogard JR, et al. The Global Syndemic of Obesity, Undernutrition, and Climate Change: The Lancet Commission report. The Lancet. 2019;393(10173):791-846.
  45. Skouteris H, Bergmeier HJ, Berns SD, Betancourt J, Boynton Jarrett R, Davis MB, et al. Reframing the early childhood obesity prevention narrative through an equitable nurturing approach. Maternal & Child Nutrition. 2020;17(1).
  46. Cinelli G, Fabrizi M, Shashaj B, De Matteis G, Bedogni G, Comparcola D, et al. Infant Feeding Practices in the First Year of Life in a Metropolitan Italian Cohort. Journal of Food and Nutrition Research. 2018;6(2):82-88.
  47. SBP. Manual de Alimentação. 4 ed. online: Sociedade Brasileira de Pediatria - Departamento de Nutrologia; 2018.
  48. WHO. Infant and young child feeding Geneva: World Health Organization; 2021 [Available from:
  49. AAP. Breastfeeding: American Academy of Pediatrics; 2022 [Available from:*hmwtbn*_ga*MTEyMzM1NzQyMS4xNjUwNTc0NjM3*_ga_FD9D3XZVQQ*MTY1MzUxMjkxOS4zLjEuMTY1MzUxMzIxMi4w&_ga=2.250122434.591034577.1653512919-1123357421.1650574637.
  50. Koletzko B, Godfrey KM, Poston L, Szajewska H, van Goudoever Johannes B, de Waard M, et al. Nutrition During Pregnancy, Lactation and Early Childhood and its Implications for Maternal and Long-Term Child Health: The Early Nutrition Project Recommendations. Annals of Nutrition and Metabolism. 2019;74(2):93-106.
  51. Victora CG, Bahl R, Barros AJD, França GVA, Horton S, Krasevec J, et al. Breastfeeding in the 21st century: epidemiology, mechanisms, and lifelong effect. The Lancet. 2016;387(10017):475-490.
  52. Zheng M, Campbell KJ, Baur L, Rissel C, Wen LM. Infant feeding and growth trajectories in early childhood: the application and comparison of two longitudinal modelling approaches. International Journal of Obesity. 2021;45(10):2230-2237.
  53. UNICEF. Overwheight and obesity - Ifanto heatlh research UK: UNICEF; [Available from:
  54. Shonkoff JP. The Science of Early Childhood Development (InBrief): Harvard University; 2007 [Available from:
  55. Thompson RA, Nelson CA. Developmental science and the media: Early brain development. American Psychologist. 2001;56(1):5-15.
  56. Georgieff MK, Ramel SE, Cusick SE. Nutritional influences on brain development. Acta Paediatrica. 2018;107(8):1310-1321.
  57. Ursell LK, Metcalf JL, Parfrey LW, Knight R. Defining the human microbiome. Nutr Rev. 2012;70 Suppl 1(Suppl 1):S38-44.
  58. Roswall J, Olsson LM, Kovatcheva-Datchary P, Nilsson S, Tremaroli V, Simon M-C, et al. Developmental trajectory of the healthy human gut microbiota during the first 5 years of life. Cell Host & Microbe. 2021;29(5):765-776.e763.
  59. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The Microbiota-Gut-Brain Axis. Physiological Reviews. 2019;99(4):1877-2013.
  60. Barko PC, McMichael MA, Swanson KS, Williams DA. The Gastrointestinal Microbiome: A Review. Journal of Veterinary Internal Medicine. 2018;32(1):9-25.
  61. Ratsika A, Codagnone MC, O’Mahony S, Stanton C, Cryan JF. Priming for Life: Early Life Nutrition and the Microbiota-Gut-Brain Axis. Nutrients. 2021;13(2).
  62. Fewtrell M, Bronsky J, Campoy C, Domellöf M, Embleton N, Fidler Mis N, et al. Complementary Feeding: A Position Paper by the European Society for Paediatric Gastroenterology, Hepatology, and Nutrition (ESPGHAN) Committee on Nutrition. J Pediatr Gastroenterol Nutr. 2017;64(1):119-132.
  63. Michaelsen KF, Greer FR. Protein needs early in life and long-term health. The American Journal of Clinical Nutrition. 2014;99(3):718S-722S.
  64. Singhal A. Early Life Origins of Obesity and Related Complications. The Indian Journal of Pediatrics. 2017;85(6):472-477.
  65. Koletzko B, von Kries R, Closa R, Escribano J, Scaglioni S, Giovannini M, et al. Lower protein in infant formula is associated with lower weight up to age 2 y: a randomized clinical trial. The American Journal of Clinical Nutrition. 2009;89(6):18361845.
  66. Weber M, Grote V, Closa-Monasterolo R, Escribano J, Langhendries J-P, Dain E, et al. Lower protein content in infant formula reduces BMI and obesity risk at school age: follow-up of a randomized trial. The American Journal of Clinical Nutrition. 2014;99(5):1041-1051.
  67. Carvalho CAd, Fonsêca PCdA, Priore SE, Franceschini SdCC, Novaes JFd. Consumo alimentar e adequação nutricional em crianças brasileiras: revisão sistemática. Revista Paulista de Pediatria. 2015;33(2):211-221.
  68. Mello CS, Barros KV, de Morais MB. Brazilian infant and preschool children feeding: literature review. Jornal de Pediatria (Versão em Português). 2016;92(5):451463.
  69. Nogueira-de-Almeida CA, Ued FdV, Del Ciampo LA, Martinez EZ, Ferraz IS, Contini AA, et al. Prevalence of childhood anaemia in Brazil: still a serious health problem: a systematic review and meta-analysis. Public Health Nutrition. 2021;24(18):6450-6465.
  70. Nelson CA. Neural plasticity and human development: the role of early experience in sculpting memory systems. Developmental Science. 2001;3(2):115-136.
  71. Zubler JM, Wiggins LD, Macias MM, Whitaker TM, Shaw JS, Squires JK, et al. Evidence-Informed Milestones for Developmental Surveillance Tools. Pediatrics. 2022;10.1542/peds.2021-052138.
  72. Machel G. Good early development—the right of every child. The Lancet. 2017;389(10064):13-14.
  73. Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience. 2004;125(1):1-6.
  74. Bock J, Gruss M, Becker S, Braun K. Experience-induced Changes of Dendritic Spine Densities in the Prefrontal and Sensory Cortex: Correlation with Developmental Time Windows. Cerebral Cortex. 2005;15(6):802-808.
  75. Schwarzenberg SJ, Georgieff MK, Daniels S, Corkins M, Golden NH, Kim JH, et al. Advocacy for Improving Nutrition in the First 1000 Days to Support Childhood Development and Adult Health. Pediatrics. 2018;141(2).
  76. Ventura AK. Does Breastfeeding Shape Food Preferences Links to Obesity. Annals of Nutrition and Metabolism. 2017;70(Suppl. 3):8-15.
  77. Scott JA. The first 1000 days: A critical period of nutritional opportunity and vulnerability. Nutrition & Dietetics. 2020;77(3):295-297.
  78. de Lauzon-Guillain B, Jones L, Oliveira A, Moschonis G, Betoko A, Lopes C, et al. The influence of early feeding practices on fruit and vegetable intake among preschool children in 4 European birth cohorts. The American Journal of Clinical Nutrition. 2013;98(3):804-812.
  79. Perrine CG, Galuska DA, Thompson FE, Scanlon KS. Breastfeeding Duration Is Associated With Child Diet at 6 Years. Pediatrics. 2014;134(Supplement 1):S50-S55.
  80. Scott J, Chih T, Oddy W. Food Variety at 2 Years of Age is Related to Duration of Breastfeeding. Nutrients. 2012;4(10):1464-1474.
  81. Nogueira-de-Almeida CA, Falcão MC, Ribas-Filho D, Zorzo RA, Konstantyner T, Ricci R, et al. Consensus of the Brazilian Association of Nutrology on Milky Feeding of Children Aged 1–5 Years Old. International Journal of Nutrology. 2020;13(01):002016.
  82. da Cunha AJLA, Leite ÁJM, de Almeida IS. The pediatrician's role in the first thousand days of the child: the pursuit of healthy nutrition and development. Jornal de Pediatria. 2015;91(6):S44-S51.
  83. Pietrobelli A, Agosti M. Nutrition in the First 1000 Days: Ten Practices to Minimize Obesity Emerging from Published Science. International Journal of Environmental Research and Public Health. 2017;14(12).
  84. Williams K, Thomson D, Seto I, Contopoulos-Ioannidis DG, Ioannidis JPA, Curtis S, et al. Standard 6: Age Groups for Pediatric Trials. Pediatrics. 2012;129(Supplement_3):S153-S160.
  85. Mondi CF, Reynolds AJ. Socio-Emotional Learning among Low-Income Prekindergarteners: The Roles of Individual Factors and Early Intervention. Early Education and Development. 2020;32(3):360-384.
  86. Howard SJ, Vasseleu E, Neilsen-Hewett C, de Rosnay M, Williams KE. Predicting Academic School Readiness and Risk Status from Different Assessment Approaches and Constructs of Early Self-Regulation. Child & Youth Care Forum. 2021;51(2):369-393.
  87. Brandlistuen RE, Flatø M, Stoltenberg C, Helland SS, Wang MV. Gender gaps in preschool age: A study of behavior, neurodevelopment and pre-academic skills. Scandinavian Journal of Public Health. 2020;49(5):503-510.
  88. Bueno MB, Fisberg RM, Maximino P, Rodrigues GdP, Fisberg M. Nutritional risk among Brazilian children 2 to 6 years old: A multicenter study. Nutrition. 2013;29(2):405-410.
  89. ENANI. Estado Nutricional Antropométrico da Criança e da Mãe: Prevalência de indicadores antropométrico de crianças brasileiras menores de 5 anos de idade e suas mães biológicas. Universidade Federal do Rio de Janeiro; 2019.
  90. BRASIL. surveillance of risk and protective factors for chronic diseases by telephone survey: estimates of frequency and sociodemographic distribution of risk and protective factors for chronic diseases in the capitals of the 26 Brazilian states and the Federal District in 2019. Ministério da Saúde; 2019.
  91. Castro MAd, Fontanelli MdM, Nogueira-de-Almeida CA, Fisberg M. Food Insecurity Reduces the Chance of Following a Nutrient-Dense Dietary Pattern by Brazilian Adults: Insights from a Nationwide Cross-Sectional Survey. Nutrients. 2022;14(10).
  92. Keller-Margulis MA, Dempsey AG. Cognitive and Academic Performance of Preschool-Age Children Born Preterm. Early Childhood Education Journal. 2019;48(2):203-211.
  93. Nur Khasanah N, Mufarihah A, Luthfa I. How Does Birth Weight Affect the Development of Preschool Children? A Cross-Sectional Study. KnE Life Sciences. 2022;10.18502/kls.v7i2.10374.
  94. Bueno MB, Selem SSAdC, Arêas JAG, Fisberg RM. Prevalência e fatores associados à anemia entre crianças atendidas em creches públicas de São Paulo. Revista Brasileira de Epidemiologia. 2006;9(4):462-470.
  95. Braga MCS, Nogueira LR, Okuizumi AM, Rocha NO, de Almeida AR, Maximino P, et al. Seletividade alimentar e o papel da escola: crianças que frequentam regularmente a escola apresentam maior repertório alimentar? Medicina (Ribeirão Preto). 2021;54(3).
  96. ENANI. Biomarcadores do estado de micronutrientes: prevalências de deficiências e curvas de distribuição de micronutrientes em crianças brasileiras menores de 5 anos 3. Universidade Federal do Rio de Janeiro; 2019.
  97. Fisberg M, Del’Arco APWT, Previdelli A, Tosatti AM, Nogueira-de-Almeida CA. Hábito alimentar nos lanches intermediários de crianças pré-escolares brasileiras: estudo em amostra nacional representativa. International Journal of Nutrology. 2020;08(04):058-071.
  98. du Toit M, van der Linde J, Swanepoel DW. Early Childhood Development Risks and Protective Factors in Vulnerable Preschool Children from Low-Income Communities in South Africa. Journal of Community Health. 2020;46(2):304-312.
  99. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D, Vaituzis AC, et al. Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences. 2004;101(21):8174-8179.
  100. Knudsen EI. Sensitive Periods in the Development of the Brain and Behavior. Journal of Cognitive Neuroscience. 2004;16(8):1412-1425.
  101. Katz LC, Shatz CJ. Synaptic Activity and the Construction of Cortical Circuits. Science. 1996;274(5290):1133-1138.
  102. Singer W. Development and Plasticity of Cortical Processing Architectures. Science. 1995;270(5237):758-764.
  103. Buonomano DV, Merzenich MM. CORTICAL PLASTICITY: From Synapses to Maps. Annual Review of Neuroscience. 1998;21(1):149-186.
  104. Stephenson J, Heslehurst N, Hall J, Schoenaker DAJM, Hutchinson J, Cade JE, et al. Before the beginning: nutrition and lifestyle in the preconception period and its importance for future health. The Lancet. 2018;391(10132):1830-1841.
  105. Grantham-McGregor S. A Review of Studies of the Effect of Severe Malnutrition on Mental Development. The Journal of Nutrition. 1995;125(suppl_8):2233S-2238S.
  106. Georgieff MK, Innis SM. Controversial Nutrients That Potentially Affect Preterm Neurodevelopment: Essential Fatty Acids and Iron. Pediatric Research. 2005;57(5 Part 2):99R-103R.
  107. Innis SM. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. The Journal of Pediatrics. 2003;143(4):1-8.
  108. Janssen CIF, Kiliaan AJ. Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: The influence of LCPUFA on neural development, aging, and neurodegeneration. Progress in Lipid Research. 2014;53:1-17.
  109. Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. The American Journal of Clinical Nutrition. 2007;85(2):614S-620S.
  110. Carlson SJ, Fallon EM, Kalish BT, Gura KM, Puder M. The Role of the ω-3 Fatty Acid DHA in the Human Life Cycle. Journal of Parenteral and Enteral Nutrition. 2012;37(1):15-22.
  111. Christian P, Mullany LC, Hurley KM, Katz J, Black RE. Nutrition and maternal, neonatal, and child health. Seminars in Perinatology. 2015;39(5):361-372.
  112. Kennedy D. B Vitamins and the Brain: Mechanisms, Dose and Efficacy—A Review. Nutrients. 2016;8(2).
  113. Eichholzer M, Tönz O, Zimmermann R. Folic acid: a public-health challenge. The Lancet. 2006;367(9519):1352-1361.
  114. Rosales FJ, Reznick JS, Zeisel SH. Understanding the role of nutrition in the brain and behavioral development of toddlers and preschool children: identifying and addressing methodological barriers. Nutritional Neuroscience. 2013;12(5):190-202.
  115. Walter T. 4 Effect of iron-deficiency anaemia on cognitive skills in infancy and childhood. Baillière's Clinical Haematology. 1994;7(4):815-827.
  116. Bion WR. Learning from experience. New York City: Jason Aronson; 1962.
  117. Bion WR. Atenção e interpretação. 2 ed. Rio de Janeiro: Imago; 2006.
  118. de Andrade AM. Recovering the psychic apparatus. The International Journal of Psychoanalysis. 2017;96(3):521-533.
  119. Nogueira De Almeida CCJ. Psicologia da alimentação. In: Nogueira De Almeida CA, Mello ED, editors. Nutrologia Pediátrica - Prática Baseada em Evidências. 2a. ed. São Paulo: Manole; 2022. p. 115-124.
  120. Nogueira De Almeida CCJ, Nogueira De Almeida CA, Mello ED. Perfis parentais e sua aplicação em nutrologia. In: Nogueira De Almeida CA, Mello ED, editors. Nutrologia Pediátrica - Prática Baseada em Evidências. 2a. ed. São Paulo: Manole; 2022. p. 125-138.
  121. Kim P. Human Maternal Brain Plasticity: Adaptation to Parenting. New Directions for Child and Adolescent Development. 2016;2016(153):47-58.
  122. Rosado de Miranda Justo J. Prenatal Maternal Psychic Development and Fetal Behavior: An Interacting Reality. International Journal of Developmental and Educational Psychology Revista INFAD de Psicología. 2016;5(1).
  123. Behrendt HF, Scharke W, Herpertz-Dahlmann B, Konrad K, Firk C. Like mother, like child? Maternal determinants of children's early social-emotional development. Infant Mental Health Journal. 2019;40(2):234-247.
  124. Sajedi F, Ahmadi Doulabi M, Vameghi R, Mazaheri MA, Akbarzadehbaghban A. Relationship of Mothers' Psychological Status with Development of Kindergarten Children. Iranian journal of child neurology. 2016;10(3):61-72.

How to Cite

Nogueira-de-Almeida, C. A., Ribas Filho, D., Weffort, V. R. S., Ued, F. da V. ., Nogueira-de-Almeida, C. C. J., Nogueira, F. B., Steiner, M. L., & Fisberg, M. (2022). First 2,200 days of life as a window of opportunity for multidisciplinary action regarding the developmental origin of health and disease: positioning of the Brazilian Association of Nutrology. International Journal of Nutrology, 15(3).