Skip to main content Skip to main navigation menu Skip to site footer
Review
Published: 01-31-2023

Clinical, cellular and molecular approaches to oxidative stress in athletes' bodies: a systematic and integrative review

Pituba Cardiology Clinic, Mato Grosso street,184, Pituba ,Salvador, Bahia, Brazil
Physical exercises Oxigen-reactive species Oxidative stress Antioxidants Mitochondria

Abstract

Introduction: Frequent physical exercises can cause a state of transient fatigue, thus increasing the regenerative capacity of the body and inducing an overcompensation of the biological systems involved. The state resulting from overtraining has negative consequences not only for physical performance but also for health and when this state occurs, reactive oxygen species (ROS) are synthesized in the body. Objective: It was to carry out a systematic and integrative review of the main clinical, cellular and molecular approaches to oxidative stress in athletes' bodies, as well as the main functions of antioxidants in mitochondria. Methods: The systematic review rules of the PRISMA Platform were followed. The research was carried out from October to December 2022 in Scopus, PubMed, Science Direct, Scielo, and Google Scholar databases. The quality of the studies was based on the GRADE instrument and the risk of bias was analyzed according to the Cochrane instrument. Results and Conclusion: A total of 127 articles were found, and a total of 67 articles were fully evaluated and 57 were included and developed in the present systematic review study. Considering the Cochrane tool for risk of bias, the overall assessment resulted in 7 studies at high risk of bias and 25 studies that did not meet the GRADE. Studies have shown that free radicals play important roles as regulators in muscle signaling processes. Oxidative stress reflects an imbalance between the production of reactive oxygen species and adequate antioxidant defense. The relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. High levels of reactive oxygen species produced in skeletal muscle during exercise have been associated with muscle damage and impaired muscle function. Antioxidant supplementation may be warranted under specific conditions when athletes are exposed to high oxidative stress or do not meet dietary antioxidant requirements. Continuous aerobic exercise under moderate-intensity or high-intensity interval training can be recommended to increase the body's ability to maintain redox balance, especially for unhealthy individuals.

Metrics

Metrics Loading ...

References

  1. Canals-Garzón C, Guisado-Barrilao R, Martínez-García D, Chirosa-Ríos IJ, Jerez-Mayorga D, Guisado-Requena IM. Effect of Antioxidant Supplementation on Markers of Oxidative Stress and Muscle Damage after Strength Exercise: A Systematic Review. Int J Environ Res Public Health. 2022 Feb 5;19(3):1803. doi: 10.3390/ijerph19031803.
  2. Zhou Z, Chen C, Teo EC, Zhang Y, Huang J, Xu Y, Gu Y. Intracellular Oxidative Stress Induced by Physical Exercise in Adults: Systematic Review and Meta-Analysis. Antioxidants (Basel). 2022 Sep 4;11(9):1751. doi: 10.3390/antiox11091751.
  3. Pingitore A, Lima GP, Mastorci F, Quinones A, Iervasi G, Vassalle C. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition. 2015 Jul-Aug;31(7-8):916-22. doi: 10.1016/j.nut.2015.02.005.
  4. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44-84.
  5. Vassalle C, Pingitore A, De Giuseppe R, Vigna L, Bamonti F. Biomarkers to estimate bioefficacy of dietary/supplemental antioxidants in sports. In press in :"Antioxidants in Sport Nutrition". Ed CRC Press/Taylor & Francis Group, 2014;16:255-72.
  6. Brisswalter J, Louis J. Vitamin supplementation benefits in master athletes. Sports Med 2014;44:311-8.
  7. Wilkinson M, Hart A, Milan SJ, Sugumar K. Vitamins C and E for asthma and exerciseinduced bronchoconstriction. Cochrane Database Syst Rev 2014;6:CD010749.
  8. Myburgh KH. Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med 2014;44 Suppl 1:S57-70.
  9. Milan SJ, Hart A, Wilkinson M. Vitamin C for asthma and exercise-induced
  10. bronchoconstriction. Cochrane Database Syst Rev 2013; 10:CD010391.
  11. Dato S, Crocco P, D'Aquila P, de Rango F, Bellizzi D, Rose G, Passarino G.Exploring the role of genetic variability and lifestyle in oxidative stress response for healthy aging and longevity. Int J Mol Sci 2013;14:16443-72.
  12. Morales-Alamo D, Calbet JA. Free radicals and sprint exercise in humans. Free Radic Res 2014;48:30-42.
  13. Peternelj TT, Coombes JS. Antioxidant supplementation during exercise training: beneficial or detrimental? Sports Med. 2011 Dec 1;41(12):1043-69. doi: 10.2165/11594400-000000000-00000. PMID: 22060178.
  14. Zeng Z, Centner C, Gollhofer A, König D. Effects of Dietary Strategies on Exercise-Induced Oxidative Stress: A Narrative Review of Human Studies. Antioxidants (Basel). 2021 Mar 31;10(4):542. doi: 10.3390/antiox10040542. PMID: 33807377; PMCID: PMC8066171.
  15. Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol. 2020;35:101499.
  16. doi:10.1016/j.redox.2020.101499.
  17. Hawley JA, Hargreaves M, Joyner MJ, Zierath JR. Integrative biology of exercise. Cell. 2014 Nov 6;159(4):738-49.
  18. Neufer PD, Bamman MM, Muoio DM, Bouchard C, Cooper DM, Goodpaster BH, Booth FW, Kohrt WM, Gerszten RE, Mattson MP, Hepple RT, Kraus WE, Reid MB, Bodine SC, Jakicic JM, Fleg JL, Williams JP, Joseph L, Evans M, Maruvada P, Rodgers M, Roary M, Boyce AT, Drugan JK, Koenig JI, Ingraham RH, Krotoski D, Garcia-Cazarin M, McGowan JA, Laughlin MR. Understanding the Cellular and Molecular Mechanisms of Physical Activity-Induced Health
  19. Benefits. Cell Metab. 2015 Jul 7;22(1):4-11.
  20. Ruegsegger GN, Booth FW. Health Benefits of Exercise. Cold Spring Harb
  21. Perspect Med. 2018 Jul 2;8(7). pii: a029694.
  22. Cheng AJ, Bruton JD, Lanner JT, Westerblad H. Antioxidant treatments do not improve force recovery after fatiguing stimulation of mouse skeletal muscle fibres. J Physiol. 2015 Jan 15;593(2):457-72.
  23. Cheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol. 2016 Sep 15;594(18):5149-60.
  24. Reid MB. Redox interventions to increase exercise performance. J Physiol. 2016 Sep 15;594(18):5125-33.
  25. Lamb GD, Westerblad H. Acute effects of reactive oxygen and nitrogen species on the contractile function of skeletal muscle. J Physiol. 2011 May 1;589(Pt9):2119-27. doi: 10.1113/jphysiol.2010.199059.
  26. Murphy RM, Dutka TL, Lamb GD. Hydroxyl radical and glutathione interactions alter calcium sensitivity and maximum force of the contractile apparatus in rat skeletal muscle fibres. J Physiol. 2008 Apr 15;586(8):2203-16. doi: 10.1113/jphysiol.2007.150516.
  27. Bruton JD, Place N, Yamada T, Silva JP, Andrade FH, Dahlstedt AJ, Zhang SJ, Katz A, Larsson NG, Westerblad H. Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol. 2008 Jan 1;586(1):175-84.
  28. Dutka TL, Mollica JP, Lamb GD. Differential effects of peroxynitrite on contractile protein properties in fast- and slow-twitch skeletal muscle fibers of rat. J Appl Physiol (1985). 2011 Mar;110(3):705-16.
  29. Place N, Ivarsson N, Venckunas T, Neyroud D, Brazaitis M, Cheng AJ, Ochala J, Kamandulis S, Girard S, Volungevičius G, Paužas H, Mekideche A, Kayser B, Martinez-Redondo V, Ruas JL, Bruton J, Truffert A, Lanner JT, Skurvydas A, Westerblad H. Ryanodine receptor fragmentation and sarcoplasmic reticulum Ca2+ leak after one session of high-intensity interval exercise. Proc
  30. Natl Acad Sci U S A. 2015 Dec 15;112(50):15492-7.
  31. Salanova M, Schiffl G, Gutsmann M, Felsenberg D, Furlan S, Volpe P, Clarke A, Blottner D. Nitrosative stress in human skeletal muscle attenuated by exercise countermeasure after chronic disuse. Redox Biol. 2013 Oct 28;1:514-26.
  32. Sun QA, Wang B, Miyagi M, Hess DT, Stamler JS. Oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor/Ca2+ release channel
  33. (RyR1): sites and nature of oxidative modification. J Biol Chem. 2013 Aug
  34. ;288(32):22961-71.
  35. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763. Epub
  36. Jul 27. PMID: 28819546; PMCID: PMC5551541.
  37. Sharma N, Pasala MS, Prakash A. Mitochondrial DNA: Epigenetics and environment. Environ Mol Mutagen. 2019 Oct;60(8):668-682. doi:
  38. 1002/em.22319. Epub 2019 Aug 6. PMID: 31335990; PMCID: PMC6941438].
  39. Gabriel BM, Zierath JR. The Limits of Exercise Physiology: From Performance to Health. Cell Metab. 2017;25(5):1000-1011. doi:10.1016/j.cmet.2017.04.018.
  40. Hawley, J.A., Maughan, R.J., and Hargreaves, M. (2015). Exercise metabolism: historical perspective. Cell Metab. 22, 12–17.
  41. Glancy B, Hartnell LM, Malide D, Yu ZX, Combs CA, Connelly PS, Subramaniam, S., and Balaban, R.S. Mitochondrial reticulum for cellular energy distribution in muscle. Nature. 2015, 523, 617–620.
  42. Kuznetsov AV, and Margreiter R. Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial
  43. complexity. Int. J. Mol. Sci. 2009, 10, 1911–1929.
  44. Lundby C, and Jacobs RA. Adaptations of skeletal muscle mitochondria to exercise training. Exp. Physiol. 2016. 101, 17–22.
  45. Brancaccio M, Mennitti C, Cesaro A, Fimiani F, Moscarella E, Caiazza M, Gragnano F, Ranieri A, D'Alicandro G, Tinto N, Mazzaccara C, Lombardo B, Pero R, Limongelli G, Frisso G, Calabrò P, Scudiero O. Dietary Thiols: A Potential Supporting Strategy against Oxidative Stress in Heart Failure and Muscular Damage during Sports Activity. Int J Environ Res Public Health. 2020 Dec 16;17(24):9424. doi: 10.3390/ijerph17249424. PMID: 33339141; PMCID: PMC7765667.
  46. Dekkers JC, van Doornen LJ, Kemper HC. The role of antioxidant vitamins and enzymes in the prevention of exercise-induced muscle damage. Sports Med. 1996 Mar;21(3):213-38. doi: 10.2165/00007256-199621030-00005. PMID: 8776010.
  47. Righi NC, Schuch FB, De Nardi AT, Pippi CM, de Almeida Righi G, Puntel GO, da Silva AMV, Signori LU. Effects of vitamin C on oxidative stress,
  48. inflammation, muscle soreness, and strength following acute exercise: metaanalyses of randomized clinical trials. Eur J Nutr. 2020 Oct;59(7):2827-2839. doi:10.1007/s00394-020-02215-2. Epub 2020 Mar 11. PMID: 32162041.
  49. Hodges RE, Minich DM. Modulation of Metabolic Detoxification Pathways Using Foods and Food-Derived Components: A Scientific Review with Clinical Application. J Nutr Metab. 2015;2015:760689. doi: 10.1155/2015/760689. Epub 2015 Jun 16. PMID: 26167297; PMCID: PMC4488002.
  50. Navarro SL, Peterson S, Chen C, Makar KW, Schwarz Y, King IB, Li SS, Li L,
  51. Kestin M, Lampe JW. Cruciferous vegetable feeding alters UGT1A1 activity: diet- and genotype-dependent changes in serum bilirubin in a controlled feeding trial. Cancer Prev Res (Phila). 2009;2:345–52.
  52. Kim MJ, Hwang JH, Ko HJ, Na HB, Kim JH. Lemon detox diet reduced body fat, insulin resistance, and serum hs-CRP level without hematological
  53. changes in overweight Korean women. Nutr Res. 2015;35:409–20.
  54. Steinkellner H, Rabot S, Freywald C, Nobis E, Chabicovskyk M, Knasmuller S, Kassie F. Effects of cruciferous vegetables and their constituents on drug metabolizing enzymes involved in the bioactivation of DNA-reactive dietary carcinogens. Mutal Res. 2001;480:285–97.
  55. Hakooz N, Hamdan I. Effects of dietary broccoli on human in vivo caffeine metabolism: a pilot study on a group of Jordanian volunteers. Curr Drug Metab. 2007;8:9–15.
  56. Chow HHS, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA, Perloff M, Crowell JA, Alberts DS. Resveratrol modulates drug- and
  57. carcinogenmetabolizing enzymes in a healthy volunteer study. Cancer Prev Res.
  58. ;3:1168–75.
  59. Jung SJ, Kim WL, Park BH, Lee SO, Chae SW. Effect of toxic trace element detoxification, body fat reduction following four-week intake of the Wellnessup diet: a three-arm, randomized clinical trial. Nutr Metab (Lond). 2020 Jun
  60. ;17:47. doi: 10.1186/s12986-020-00465-9. PMID: 32582363; PMCID: PMC7310262.
  61. Tualeka AR, Rahmawati P, Ahsan A, Russeng SS, Sukarmin S, Wahyu A. The Cost Prediction for Chromium Detox Using Foods Intake Containing Glutathione at the Leather Tanning Industry in Magetan, Indonesia. Open Access Maced J Med Sci. 2019 Aug 15;7(21):3698-3703. doi: 10.3889/oamjms.2019.557. PMID: 32010401; PMCID: PMC6986507.
  62. Farajian P, Kavouras SA, Yannakoulia M, Sidossis LS. Dietary intake and nutritional practices of elite Greek aquatic athletes. Int J Sport Nutr Exerc Metab. 2004 Oct;14(5):574-85. doi: 10.1123/ijsnem.14.5.574. PMID: 15673103.
  63. Alves Vas J, Barrientos G, Toro Román V, Robles Gil MC, Maynar Mariño M, Muñoz Marín D. Acute effect of a maximum incremental test until exhaustion on malondialdehyde and antioxidant vitamins in plasma and erythrocytes in athletes. Nutr Hosp. 2021 Apr 19;38(2):374-382. English. doi: 10.20960/nh.03400. PMID: 33371708.
  64. Paithankar JG, Saini S, Dwivedi S, Sharma A, Chowdhuri DK. Heavy metal associated health hazards: An interplay of oxidative stress and signal transduction. Chemosphere. 2021 Jan;262:128350. doi: 10.1016/j.chemosphere.2020.128350.
  65. Epub 2020 Sep 16. PMID: 33182141.
  66. Mattick JS, Makunin IV. 2006 Non-coding RNA. Hum Mol Genet 15 Spec No 1:R17–29.
  67. Huang B, Zhang R. 2014 Regulatory non-coding RNAs: revolutionizing the RNA world. Mol Biol Rep 41(6):3915–3923.
  68. Wei JW, Huang K, Yang C, Kang CS. 2017 Non-coding RNAs as regulators in
  69. epigenetics (Review). Oncol Rep 37(1):3–9.
  70. Vendramin R, Marine JC, Leucci E. 2017 Non-coding RNAs: the dark side of
  71. nuclear-mitochondrial communication. EMBO J 36(9):1123–1133.
  72. Bienertova-Vasku J, Sana J, Slaby O. 2013 The role of microRNAs in mitochondria in cancer. Cancer Lett 336(1):1–7.
  73. Matsui M, Corey DR. 2017 Non-coding RNAs as drug targets. Nat Rev Drug Discov 16(3):167–179.
  74. Sas-Chen A, Srivastava S, Yarden Y. 2017 The short and the long: non-coding RNAs and growth factors in cancer progression. Biochem Soc Trans 45(1):51–64.
  75. Olavarria JV, Burzio VA, Borgna V, Lobos-Gonzalez L, Araya M, Guevara F, Villota C, Burzio LO. 2018 Long Noncoding Mitochondrial RNAs (LncmtRNAs) as Targets for Cancer Therapy. Mitochondrial DNA-New Insights: IntechOpen. doi:10.5772/intechopen.75453.
  76. Zhao X, León IR, Bak S, Mogensen M, Wrzesinski K, Højlund K, Jensen ON.
  77. Phosphoproteome analysis of functional mitochondria isolated from resting
  78. human muscle reveals extensive phosphorylation of inner membrane protein
  79. complexes and enzymes. Mol Cell Proteomics 10.1074/mcp.M110.000299.

How to Cite

Toledo, I. C. A. (2023). Clinical, cellular and molecular approaches to oxidative stress in athletes’ bodies: a systematic and integrative review. International Journal of Nutrology, 16(1). https://doi.org/10.54448/ijn23106