Skip to main content Skip to main navigation menu Skip to site footer
Review
Published: 01-25-2023

Sports nutrology and gut microbiota: a systematic review

Nutroeleve Medicina e Treinamento, Macapá, Amapá, Brazil.
Nutrients nutrology Gut microbiota sports Metabolism Skeletal muscle

Abstract

Introduction: Many of the established positive health benefits of exercise have been documented by historic discoveries in the field of exercise physiology. Regular physical training associated with nutritional health has broad health benefits for the gut microbiota, acting positively on almost all organ systems of the body. Objective: It was to analyze the main metabolic pathways modulated by nutrients, gut microbiota, and physical exercise in muscle regeneration and sports performance. Methods: The present study followed a systematic review model (PRISMA). The literary search process was carried out from July to September 2022 and was developed based on Scopus, PubMed, Science Direct, Scielo, and Google Scholar, with scientific articles from 2004 to 2022. The low quality of evidence was attributed to case reports, editorials, and brief communications, according to the GRADE instrument. The risk of bias was analyzed according to the Cochrane instrument. Results and Conclusion: We found 132 studies that underwent eligibility analysis, and then 31 of the 52 total studies were selected for this systematic review. According to the GRADE instrument, most studies showed homogeneity in their results, with I2 =98.9% >50%. The Funnel Plot showed a symmetrical behavior, not suggesting a significant risk of bias in studies with a smaller sample size. A healthy gut microbiota and a positive interaction with the immune system, promoted by diligent nutrological care, can be crucial for the muscle-gut axis and can influence the maintenance of muscle mass and its functionality in athletes. However, dysbiosis resulting from a negative interaction with the immune system can influence muscle wasting disorders. These changes can promote systemic inflammation, with overproduction of the pro-inflammatory cytokines TNF-α, IL-1β, and IL-6. Future studies should clarify whether gut microbiota dysbiosis and nutrient depletion are pathophysiologically associated with muscle wasting disorders and whether exercise can positively influence this supposed gut-muscle axis.

Metrics

Metrics Loading ...

References

  1. Skorski S, Mujika I, Bosquet L, Meeusen R, Coutts AJ, Meyer T. The Temporal Relationship Between Exercise, Recovery Processes, and Changes in Performance. Int J Sports Physiol Perform. 2019;14(8):1015-1021. doi:10.1123/ijspp.2018-0668.
  2. Tobin MJ. Why Physiology Is Critical to the Practice of Medicine: A 40-year Personal Perspective. Clin Chest Med. 2019;40(2):243-257. doi:10.1016/j.ccm.2019.02.012.
  3. Foster C, Rodriguez-Marroyo JA, de Koning JJ. Monitoring Training Loads: The Past, the Present, and the Future. Int J Sports Physiol Perform. 2017;12(Suppl 2):S22-S28. doi:10.1123/ijspp.2016-0388.
  4. Margaritelis NV, Paschalis V, Theodorou AA, Kyparos A, Nikolaidis MG. Redox basis of exercise physiology. Redox Biol. 2020;35:101499. doi:10.1016/j.redox.2020.101499.
  5. Ruegsegger GN, Booth FW. Health Benefits of Exercise. Cold Spring Harb Perspect Med. 2018 Jul 2;8(7). pii: a029694.
  6. Cheng AJ, Yamada T, Rassier DE, Andersson DC, Westerblad H, Lanner JT. Reactive oxygen/nitrogen species and contractile function in skeletal muscle during fatigue and recovery. J Physiol. 2016 Sep 15;594(18):5149-60.
  7. Ferraro, F. et al. Adult stem cells and their niches. Adv. Exp. Med. Biol. 2010, 695, 155–168
  8. Blanpain, C. et al. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004, 118, 635–648.
  9. Chacón-Martínez CA et al. Hair follicle stem cell cultures reveal selforganizing plasticity of stem cells and their progeny. EMBO J. 2017, 36, 151– 164.
  10. Rodríguez-Colman, M.J. et al. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 2017, 543, 424.
  11. Snoeck, H.W. Mitochondrial regulation of hematopoietic stem cells. Curr. Opin. Cell Biol. 2017, 49, 91–98.
  12. Zheng, X. et al. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. 2016, Elife 5, e13374.
  13. Flores, A. et al. Lactate dehydrogenase activity drives hair follicle stem cell activation. Nat. Cell Biol. 2017, 19, 1017–1026
  14. Rinschen MM. et al. Identification of bioactive metabolites using activity metabolomics. Nat. Rev. Mol. Cell Biol. 2019, 20, 353–367.
  15. Agathocleous, M. et al. Ascorbate regulates haematopoietic stem cell function and leukaemogenesis. Nature 2017, 549, 476–481.
  16. Shapira SN, Christofk HR. Metabolic Regulation of Tissue Stem Cells. Trends Cell Biol. 2020 Jul;30(7):566-576. doi: 10.1016/j.tcb.2020.04.004. Epub 2020 Apr 28. PMID: 32359707.
  17. Ticinesi A, Lauretani F, Tana C, Nouvenne A, Ridolo E, Meschi T. Exercise and immune system as modulators of intestinal microbiome: implications for the gut-muscle axis hypothesis. Exerc Immunol Rev. 2019;25:84-95. PMID: 30753131.
  18. Sorrenti, V.; Caudullo, G.; Lucignano, F.; Fortinguerra, S.; Zusso, M.; Giusti, P.; Buriani, A. Personalized sports nutrition: Role of nutrients in athletic performance. In Sports, Exercise, and Nutritional Genomics; Debmalya Barh, I.I.A., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 411–431.
  19. Kawabata, K.; Yoshioka, Y.; Terao, J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules 2019, 24, 370.
  20. Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018, 172: 1198-1215.
  21. Bermon S, Petriz B, Kajeniene A, Prestes J, Castell L, Franco OL. The microbiota: an exercise immunology perspective. Exerc Immunol Rev 2015, 21: 70-79.
  22. Codella R, Luzi L, Terruzzi I. Exercise has the guts: how physical activity may positively modulate gut microbiota in chronic and immune-based diseases. Dig Liver Dis 2018, 50: 331-341.
  23. Ryall, J.G. and Lynch, G.S. The molecular signature of muscle stem cells is driven by nutrient availability and innate cell metabolism. Curr. Opin. Clin. Nutr. Metab. Care, 2018, 21, 240–245.
  24. Machado, L. et al. In situ fixation redefines quiescence and early activation of skeletal muscle stem cells. Cell Rep. 2017, 21, 1982–1993.
  25. Ryall, J.G. et al. The NAD+-dependent SIRT1 deacetylase translates a metabolic switch into regulatory epigenetics in skeletal muscle stem cells. Cell Stem Cell. 2015, 16, 171–183.
  26. Batacan RB, Fenning AS, Dalbo VJ, Scanlan AT, Duncan MJ, Moore RJ, Stanley D. A gut reaction: the combined influence of exercise and diet on gastrointestinal microbiota in rats. J Appl Microbiol 2017, 122: 1627-1638.
  27. Barton W, Penney NC, Cronin O, Garcia-Perez I, Molloy MG, Holmes E, Shanahan F, Cotter PD, O’Sullivan O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level. Gut 2018, 67: 625-633.
  28. Cronin O, Barton W, Skuse P, Penney NC, Garcia-Perez I, Murphy EF, Woods T, Nugent H, Fanning A, Melgar S, Falvey EC, Holmes E. Cotter PD, O’Sullivan O, Molloy MG, Shanahan F. A prospective metagenomics and metabolomics analysis of the impact of exercise and/or whey protein supplementation on the gut microbiome of sedentary adults. mSystems 2018, 3: e00044-18.
  29. Durk RP, Castillo E, Marquez-Megana L, Grosicki GJ, Bolter ND, Lee CM, Bagley JR. Gut microbiota composition is related to cardiorespiratory fitness in healthy young adults. Int J Sport Nutr Exerc Metab ahead of print Jun 10, 2018. Doi: 10.1123/ijsnem.2018-0024.
  30. Sket R, Debevec T, Kublik S, Schloter M, Schoeller A, Murovec B, Vogel Mikus K, Makuc D, Pecnik K, Plavec J, Mekjavic IB, Eiken O, Prevorsek Z, Stres B. Intestinal metagenomes and metabolomes in healthy young males: inactivity and hypoxia generated negative physiological symptoms precede microbial dysbiosis. Front Physiol 2018, 9: 198.
  31. Sket R, Treichel N, Debevec T, Eiken O, Mekjavic I, Schloter M, Vital M, Chandler J, Tiedje JM, Murovec B, Prevorsek Z, Stres B. Hypoxia and inactivity related physiological changes (constipation, inflammation) are not reflected at the level of gut metabolites and butyrate producing microbial community: the PlanHab Study. Front Physiol 2017, 8: 250.
  32. Sket R, Treichel N, Kublik S, Debevec T, Eiken O, Mekjavic I,Schloter M, Vital M, Chandler J, Tiedje JM, Murovec B, Prevorsek Z, Linar M, Stres B. Hypoxia and inactivity related physiological changes precede or take place in absence of significant rearrangements in bacterial community structure: the PlanHab randomized trial pilot study. PLoS One 2017,12: e0188556.
  33. Karl JP, Margolis LM, Madslien EH, Murphy NE, Castellani JW, Gundersen Y, Hoke AV, Levangie MW, Kumar R, Chakraborty N, Gautam A, Hammamieh R, Martini S, Montain SJ, Pasiakos SM. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am J Physiol Gastrointest Liver Physiol 2017, 312: G559-G571.
  34. Zhao X, Zhang Z, Hu B, Huang W, Yuan C, Zou L. Response of gut microbiota to metabolite changes induced by endurance exercise. Front Microbiol 2018, 9: 765.
  35. De Sire R, Rizzatti G, Ingravalle F, Pizzoferrato M, Petito V, Lopetuso L, Graziani C, de Sire A, Mentella MC, Mele MC, Gasbarrini A, Scaldaferri F. Skeletal muscle-gut axis: emerging mechanisms of sarcopenia for intestinal and extra-intestinal diseases. Minerva Gastroenterol Dietol 2018, 64: 351-362.
  36. Siddhart J, Chakrabarti A, Pannérec A, Karaz S, Morin-Rivron D, Masoodi M, Feige JN, Parkinson SJ. Aging and sarcopenia associate with specific interactions between gut microbes, serum biomarkers and host physiology in rats. Aging 2017, 9: 1698- 1720.
  37. Sung MM, Byrne NJ, Robertson IM, Kim TT, Samokhvalov V, Levasseur J, Soltys CL, Fung D, Tyreman N, Denou E, Jones KE, Seubert JM, Schertzer JD, Dyck JRB. Resveratrol improves exercise performance and skeletal muscle oxidative capacity in heart failure. Am J Physiol Heart Circ Physiol 2017, 312: H842-H853.
  38. Pereira-Cano G, Polyviou T, Ludwig IA, Nastase AM, Moreno-Rojas JM, Garcia AL, Malkova D, Crozier A. Bioavailability of orange juice (poly)phenols: the impact of short-term cessation of training by male endurance athletes. Am J Clin Nutr 2017, 106: 791-800.
  39. Cerdà B, Perez M, Perez-Santiago JD, Tornero-Aguilera JF, Gonzalez-Soltero R, Larrosa M. Gut microbiota modification: another piece in the puzzle of the benefits of physical exercise in health? Front Physiol 2016, 7: 51.
  40. Ticinesi A, Lauretani F, Milani C, Nouvenne A, Tana C, Del Rio D, Maggio M, Ventura M, Meschi T. Aging gut microbiota at the cross-road between nutrition, physical frailty and sarcopenia: is there a gut-muscle axis? Nutrients 2017, 9: E1303.
  41. Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science 2016, 352: 539544.
  42. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science 2012, 336: 1268- 1273.
  43. Cook MD, Allen JM, Pence BD, Wallig MA, gaskins HR, White BA, Woods JA. Exercise and gut immune function: evidence of alterations in colon immune cell homeostasis and microbiome characteristics with exercise training. Immunol Cell Biol 2016, 94: 158-163.
  44. Biragyn A, Ferrucci L. Gut dysbiosis: a potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol 2018, 19: e295-e304.
  45. Man AWC, Li H, Xia N. Resveratrol and the Interaction between Gut Microbiota and Arterial Remodelling. Nutrients. 2020 Jan 1;12(1):119. doi: 10.3390/nu12010119. PMID: 31906281; PMCID: PMC7019510
  46. Myburgh KH. Polyphenol supplementation: benefits for exercise performance or oxidative stress? Sports Med. 2014 May;44 Suppl 1(Suppl 1):S57-70. doi: 10.1007/s40279-014-0151-4.
  47. Marttinen M, Ala-Jaakkola R, Laitila A, Lehtinen MJ. Gut Microbiota, Probiotics and Physical Performance in Athletes and Physically Active Individuals. Nutrients. 2020 Sep 25;12(10):2936. doi: 10.3390/nu12102936.
  48. Gubert C, Kong G, Renoir T, Hannan AJ. Exercise, diet and stress as modulators of gut microbiota: Implications for neurodegenerative diseases. Neurobiol Dis. 2020 Feb;134:104621. doi: 10.1016/j.nbd.2019.104621.
  49. Hughes RL, Holscher HD. Fueling Gut Microbes: A Review of the Interaction between Diet, Exercise, and the Gut Microbiota in Athletes. Adv Nutr. 2021 Dec 1;12(6):2190-2215. doi: 10.1093/advances/nmab077.
  50. Wegierska AE, Charitos IA, Topi S, Potenza MA, Montagnani M, Santacroce L. The Connection Between Physical Exercise and Gut Microbiota: Implications for Competitive Sports Athletes. Sports Med. 2022 Oct;52(10):2355-2369. doi: 10.1007/s40279-022-01696-x. Epub 2022 May 21. PMID: 35596883; PMCID: PMC9474385.
  51. Cataldi S, Bonavolontà V, Poli L, Clemente FM, De Candia M, Carvutto R, Silva AF, Badicu G, Greco G, Fischetti F. The Relationship between Physical Activity, Physical Exercise, and Human Gut Microbiota in Healthy and Unhealthy Subjects: A Systematic Review. Biology (Basel). 2022 Mar 21;11(3):479. doi: 10.3390/biology11030479. PMID: 35336852; PMCID: PMC8945171.
  52. Campaniello D, Corbo MR, Sinigaglia M, Speranza B, Racioppo A, Altieri C, Bevilacqua A. How Diet and Physical Activity Modulate Gut Microbiota: Evidence, and Perspectives. Nutrients. 2022 Jun 14;14(12):2456. doi: 10.3390/nu14122456. PMID: 35745186; PMCID: PMC9227967.

How to Cite

Vasconcelos Lima Diniz, L. . (2023). Sports nutrology and gut microbiota: a systematic review. International Journal of Nutrology, 16(1). https://doi.org/10.54448/ijn23109